Air Quality Control In New York City

Data Science Project by Fausto Llapa

Github: https://github.com/faustollapa

LinkedIn: https://www.linkedin.com/in/fausto-llapa-9901b819b/

In [41]:
Image('NYC.jpg', width = 1000)
Out[41]:

Overview

This project examines the different type of pollutants throughout the neighborhoods of New York City throughout the years. It also consists of the correlation between health cases related to the air pollutants. I used seaborn and matplotlib to visualize how much each concentration affects each neighborhood. As well as foilum to create maps to visualize the health cases and pollution across New York. It can be assumed that the more polluted areas in New York City do not have high health cases correlated to pollution.

Techniques

To accomplish this, I combined string values from three columns into one and into a new column. I also dropped unnessacary values, eventually merging with the neighborhood dataset based on the neighborhood names. I also used functions to create multiple bar graphs, line graphs, and scatterplots. Eventually, ending it off with two foilum maps that generally views the impact of pollution and health cases in New York City.

Data

This dataset consists of air pollutants and health cases related to the pollutants. Also, contain the locations, measurements, and time intervals of each pollutant/health cases. I eventually use this dataset to merge with the NYC UNF 42 dataset.

This dataset contains all 42 neighborhoods of New York City. It also contains boroughs and locations. I also used the geojson file from this website for the foilum maps.

Data Collection / Pre-Processing

In [2]:
import warnings
from IPython.display import Image
import pandas as pd
import seaborn as sns
import geopandas as gpd
import folium
import matplotlib.pyplot as plt
%matplotlib inline
from google.colab import files

warnings.filterwarnings('ignore')
uploaded = files.upload()
airquality = pd.read_csv("Air_Quality.csv")
airquality
Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.
Saving Air_Quality.csv to Air_Quality.csv
Out[2]:
Unique ID Indicator ID Name Measure Measure Info Geo Type Name Geo Join ID Geo Place Name Time Period Start_Date Data Value Message
0 333939 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter Borough 1 Bronx Winter 2014-15 12/1/2014 10.21 NaN
1 547354 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter Borough 1 Bronx Annual Average 2017 1/1/2017 7.72 NaN
2 605650 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter Borough 1 Bronx Winter 2017-18 12/1/2017 8.28 NaN
3 179503 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter Borough 1 Bronx Winter 2010-11 12/1/2010 13.85 NaN
4 179643 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter Borough 1 Bronx Annual Average 2009 12/1/2008 11.05 NaN
... ... ... ... ... ... ... ... ... ... ... ... ...
14284 131167 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children Borough 2 Brooklyn 2005-2007 1/1/2005 21.10 NaN
14285 518596 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children Borough 2 Brooklyn 2012-2014 1/2/2012 21.30 NaN
14286 151571 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children Borough 2 Brooklyn 2009-2011 1/1/2009 20.90 NaN
14287 628961 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children Borough 2 Brooklyn 2015-2017 1/1/2015 16.50 NaN
14288 131168 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children Borough 3 Manhattan 2005-2007 1/1/2005 20.10 NaN

14289 rows × 12 columns

The Name column from the air quality dataset is made up of air pollutants names as well as health stats that are attributtal from the pollutants. The health stats deserve their own columns as we will be comparing them. Also, we won't be needing the traffic density as it only measures distance traveled of vehicles within the area. It could be used when we anaylze the data throughout the visualizations as it can possibly be the cause. There are no measures for health related data for the time interval for 2005-2007 so we remove it from our data. Also, we want to create a foilum map and we would want to exclude citywide data and boroughs, etc as it is too general. This only leaves UNF42 as we would only want to view neighborhoods.

In [3]:
#This removes rows containing 'Traffic Density', year intervals '2005-2007', and keeps rows contain geo type of UHF42. 
airquality = airquality[~airquality['Name'].str.startswith('Traffic Density')]
airquality = airquality[~airquality['Time Period'].str.contains('2005-2007')]
airquality = airquality[airquality['Geo Type Name'] == 'UHF42'].reset_index()
airquality
Out[3]:
index Unique ID Indicator ID Name Measure Measure Info Geo Type Name Geo Join ID Geo Place Name Time Period Start_Date Data Value Message
0 223 410860 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Annual Average 2016 12/31/2015 6.59 NaN
1 224 547492 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Annual Average 2017 1/1/2017 6.58 NaN
2 229 212709 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Winter 2013-14 12/1/2013 11.55 NaN
3 230 334077 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Winter 2014-15 12/1/2014 8.05 NaN
4 231 410859 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Summer 2016 5/31/2016 7.54 NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ...
4993 14265 151527 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children UHF42 101 Kingsbridge - Riverdale 2009-2011 1/1/2009 22.30 NaN
4994 14266 628965 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children UHF42 101 Kingsbridge - Riverdale 2015-2017 1/1/2015 15.10 NaN
4995 14269 151528 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children UHF42 102 Northeast Bronx 2009-2011 1/1/2009 32.20 NaN
4996 14270 628966 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children UHF42 102 Northeast Bronx 2015-2017 1/1/2015 33.30 NaN
4997 14276 518600 655 O3-Attributable Asthma Hospitalizations Estimated Annual Rate- Children 0 to 17 Yrs Old per 100,000 children UHF42 101 Kingsbridge - Riverdale 2012-2014 1/2/2012 22.70 NaN

4998 rows × 13 columns

As seen in the dataset, there are columns that contain the name, time period, and measure of the pollutant/health cases. In order to get the specific values, the best way would be to combine the strings of each column so later on we can make columns containing those specific measurements within the specific time period, measurement, and pollutant/health cases.

In [4]:
#This adds the strings from three columns together removing any unnessecary punctuation
airquality['Air Pollutant'] = (airquality['Name'] 
                         + ' ' + airquality['Time Period'] 
                         + ' ' + airquality['Measure']).str\
                        .replace(',', '')\
                        .replace('-', '')\
                        .replace(' ', '_')\
In [5]:
airquality.head()
Out[5]:
index Unique ID Indicator ID Name Measure Measure Info Geo Type Name Geo Join ID Geo Place Name Time Period Start_Date Data Value Message Air Pollutant
0 223 410860 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Annual Average 2016 12/31/2015 6.59 NaN Fine Particulate Matter (PM2.5) Annual Average...
1 224 547492 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Annual Average 2017 1/1/2017 6.58 NaN Fine Particulate Matter (PM2.5) Annual Average...
2 229 212709 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Winter 2013-14 12/1/2013 11.55 NaN Fine Particulate Matter (PM2.5) Winter 2013-14...
3 230 334077 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Winter 2014-15 12/1/2014 8.05 NaN Fine Particulate Matter (PM2.5) Winter 2014-15...
4 231 410859 365 Fine Particulate Matter (PM2.5) Mean mcg per cubic meter UHF42 504 South Beach - Tottenville Summer 2016 5/31/2016 7.54 NaN Fine Particulate Matter (PM2.5) Summer 2016 Mean

From the air quality dataset, we see that the Message feature isn't going to be needed especially when all it consists of is NaN values.

In [6]:
#Drops the message column
airquality.drop('Message', axis=1, inplace=True)

The New York City UNF 42 dataset is imported containing the 42 neighborhoods of New York.

In [7]:
uploaded = files.upload()
UNF = pd.read_csv('uhf_42_dohmh_2009.csv').dropna()
UNF
Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.
Saving uhf_42_dohmh_2009.csv to uhf_42_dohmh_2009.csv
Out[7]:
the_geom cartodb_id objectid borough uhf_neigh shape_area shape_leng uhfcode no_insurance_coverage
1 0106000020E61000000500000001030000000100000005... 5 5 Bronx Pelham - Throgs Neck 3.865737e+08 250903.372273 104 16.1
2 0106000020E61000000100000001030000000100000069... 18 18 Brooklyn Coney Island - Sheepshead Bay 2.288309e+08 101869.349860 210 14.1
3 0106000020E61000000200000001030000000100000005... 32 32 Queens Flushing - Clearview 3.622995e+08 125334.924243 403 18.0
4 0106000020E61000000200000001030000000100000004... 37 37 Queens Jamaica 3.645499e+08 123620.448330 408 17.9
5 0106000020E6100000010000000103000000010000005E... 38 38 Queens Southeast Queens 3.616017e+08 129288.280297 409 7.8
6 0106000020E610000002000000010300000001000000AD... 39 39 Queens Rockaway 2.657288e+08 232823.135817 410 15.0
7 0106000020E6100000020000000103000000010000000C... 43 43 Staten Island South Beach - Tottenville 7.311307e+08 175067.708940 504 11.7
8 0106000020E6100000010000000103000000010000002A... 2 2 Bronx Kingsbridge - Riverdale 1.332914e+08 57699.154353 101 8.4
9 0106000020E610000001000000010300000001000000D5... 3 3 Bronx Northeast Bronx 1.813708e+08 88219.319110 102 7.0
10 0106000020E610000001000000010300000001000000A5... 4 4 Bronx Fordham - Bronx Park 1.407724e+08 59711.871991 103 16.7
11 0106000020E610000001000000010300000001000000B7... 6 6 Bronx Crotona - Tremont 1.068978e+08 66676.089072 105 16.0
12 0106000020E61000000100000001030000000100000002... 7 7 Bronx High Bridge - Morrisania 8.589956e+07 50241.649324 106 16.0
13 0106000020E610000001000000010300000001000000EE... 8 8 Bronx Hunts Point - Mott Haven 1.128093e+08 62182.674773 107 16.0
14 0106000020E6100000010000000103000000010000008B... 9 9 Brooklyn Greenpoint 1.047836e+08 48036.348146 201 10.2
15 0106000020E6100000010000000103000000010000006E... 10 10 Brooklyn Downtown - Heights - Slope 1.758001e+08 111232.015567 202 8.0
16 0106000020E610000001000000010300000001000000E6... 11 11 Brooklyn Bedford Stuyvesant - Crown Heights 1.662263e+08 69711.014325 203 13.1
17 0106000020E610000001000000010300000001000000F2... 12 12 Brooklyn East New York 1.551405e+08 75378.418333 204 14.2
18 0106000020E61000000200000001030000000100000011... 13 13 Brooklyn Sunset Park 1.118635e+08 100114.866691 205 21.3
19 0106000020E610000001000000010300000001000000AE... 14 14 Brooklyn Borough Park 1.718763e+08 63216.738141 206 15.5
20 0106000020E610000001000000010300000001000000CA... 15 15 Brooklyn East Flatbush - Flatbush 1.937373e+08 73949.350573 207 11.6
21 0106000020E610000002000000010300000001000000E0... 16 16 Brooklyn Canarsie - Flatlands 3.598796e+08 142322.645199 208 7.4
22 0106000020E610000001000000010300000001000000B3... 17 17 Brooklyn Bensonhurst - Bay Ridge 1.603987e+08 73089.457275 209 22.2
23 0106000020E610000001000000010300000001000000B1... 19 19 Brooklyn Williamsburg - Bushwick 1.066612e+08 49012.822810 211 23.9
24 0106000020E61000000600000001030000000100000007... 20 20 Manhattan Washington Heights - Inwood 9.890333e+07 67477.648187 301 13.4
25 0106000020E610000001000000010300000001000000AE... 21 21 Manhattan Central Harlem - Morningside Heights 6.139621e+07 50891.462079 302 12.0
26 0106000020E61000000400000001030000000100000009... 22 22 Manhattan East Harlem 6.089727e+07 53979.192786 303 18.0
27 0106000020E610000001000000010300000001000000A9... 23 23 Manhattan Upper West Side 5.827181e+07 46554.865062 304 9.7
28 0106000020E6100000020000000103000000010000004F... 24 24 Manhattan Upper East Side 5.438999e+07 49821.036696 305 4.7
29 0106000020E6100000010000000103000000010000008C... 26 26 Manhattan Gramercy Park - Murray Hill 4.828882e+07 38475.197152 307 4.7
30 0106000020E61000000100000001030000000100000029... 25 25 Manhattan Chelsea - Clinton 7.943351e+07 87605.442609 306 7.5
31 0106000020E610000001000000010300000001000000AA... 27 27 Manhattan Greenwich Village - Soho 4.023911e+07 50948.825728 308 7.5
32 0106000020E61000000100000001030000000100000082... 28 28 Manhattan Union Square - Lower East Side 5.732039e+07 34713.209340 309 6.8
33 0106000020E6100000020000000103000000010000006A... 29 29 Manhattan Lower Manhattan 3.513227e+07 50752.735123 310 6.8
34 0106000020E610000001000000010300000001000000D2... 30 30 Queens Long Island City - Astoria 1.923020e+08 72324.762815 401 10.6
35 0106000020E610000002000000010300000001000000A6... 31 31 Queens West Queens 3.246549e+08 116570.277413 402 28.0
36 0106000020E61000000100000001030000000100000036... 33 33 Queens Bayside - Little Neck 2.145688e+08 70215.833085 404 8.8
37 0106000020E610000001000000010300000001000000DD... 35 35 Queens Fresh Meadows 1.534321e+08 61672.825322 406 8.8
38 0106000020E610000001000000010300000001000000A3... 34 34 Queens Ridgewood - Forest Hills 2.652703e+08 87164.991021 405 9.6
39 0106000020E61000000400000001030000000100000007... 36 36 Queens Southwest Queens 2.725265e+08 123610.729914 407 13.1
40 0106000020E61000000100000001030000000100000041... 40 40 Staten Island Port Richmond 1.645195e+08 86322.590205 501 9.6
41 0106000020E61000000100000001030000000100000041... 41 41 Staten Island Stapleton - St. George 3.272437e+08 107053.886650 502 9.6
42 0106000020E61000000200000001030000000100000010... 42 42 Staten Island Willowbrook 4.131080e+08 117827.805092 503 11.7

The neighborhoods of New York City will play an important part when displaying the maps.

In [8]:
UNF = UNF.set_index('uhf_neigh')
UNF
Out[8]:
the_geom cartodb_id objectid borough shape_area shape_leng uhfcode no_insurance_coverage
uhf_neigh
Pelham - Throgs Neck 0106000020E61000000500000001030000000100000005... 5 5 Bronx 3.865737e+08 250903.372273 104 16.1
Coney Island - Sheepshead Bay 0106000020E61000000100000001030000000100000069... 18 18 Brooklyn 2.288309e+08 101869.349860 210 14.1
Flushing - Clearview 0106000020E61000000200000001030000000100000005... 32 32 Queens 3.622995e+08 125334.924243 403 18.0
Jamaica 0106000020E61000000200000001030000000100000004... 37 37 Queens 3.645499e+08 123620.448330 408 17.9
Southeast Queens 0106000020E6100000010000000103000000010000005E... 38 38 Queens 3.616017e+08 129288.280297 409 7.8
Rockaway 0106000020E610000002000000010300000001000000AD... 39 39 Queens 2.657288e+08 232823.135817 410 15.0
South Beach - Tottenville 0106000020E6100000020000000103000000010000000C... 43 43 Staten Island 7.311307e+08 175067.708940 504 11.7
Kingsbridge - Riverdale 0106000020E6100000010000000103000000010000002A... 2 2 Bronx 1.332914e+08 57699.154353 101 8.4
Northeast Bronx 0106000020E610000001000000010300000001000000D5... 3 3 Bronx 1.813708e+08 88219.319110 102 7.0
Fordham - Bronx Park 0106000020E610000001000000010300000001000000A5... 4 4 Bronx 1.407724e+08 59711.871991 103 16.7
Crotona - Tremont 0106000020E610000001000000010300000001000000B7... 6 6 Bronx 1.068978e+08 66676.089072 105 16.0
High Bridge - Morrisania 0106000020E61000000100000001030000000100000002... 7 7 Bronx 8.589956e+07 50241.649324 106 16.0
Hunts Point - Mott Haven 0106000020E610000001000000010300000001000000EE... 8 8 Bronx 1.128093e+08 62182.674773 107 16.0
Greenpoint 0106000020E6100000010000000103000000010000008B... 9 9 Brooklyn 1.047836e+08 48036.348146 201 10.2
Downtown - Heights - Slope 0106000020E6100000010000000103000000010000006E... 10 10 Brooklyn 1.758001e+08 111232.015567 202 8.0
Bedford Stuyvesant - Crown Heights 0106000020E610000001000000010300000001000000E6... 11 11 Brooklyn 1.662263e+08 69711.014325 203 13.1
East New York 0106000020E610000001000000010300000001000000F2... 12 12 Brooklyn 1.551405e+08 75378.418333 204 14.2
Sunset Park 0106000020E61000000200000001030000000100000011... 13 13 Brooklyn 1.118635e+08 100114.866691 205 21.3
Borough Park 0106000020E610000001000000010300000001000000AE... 14 14 Brooklyn 1.718763e+08 63216.738141 206 15.5
East Flatbush - Flatbush 0106000020E610000001000000010300000001000000CA... 15 15 Brooklyn 1.937373e+08 73949.350573 207 11.6
Canarsie - Flatlands 0106000020E610000002000000010300000001000000E0... 16 16 Brooklyn 3.598796e+08 142322.645199 208 7.4
Bensonhurst - Bay Ridge 0106000020E610000001000000010300000001000000B3... 17 17 Brooklyn 1.603987e+08 73089.457275 209 22.2
Williamsburg - Bushwick 0106000020E610000001000000010300000001000000B1... 19 19 Brooklyn 1.066612e+08 49012.822810 211 23.9
Washington Heights - Inwood 0106000020E61000000600000001030000000100000007... 20 20 Manhattan 9.890333e+07 67477.648187 301 13.4
Central Harlem - Morningside Heights 0106000020E610000001000000010300000001000000AE... 21 21 Manhattan 6.139621e+07 50891.462079 302 12.0
East Harlem 0106000020E61000000400000001030000000100000009... 22 22 Manhattan 6.089727e+07 53979.192786 303 18.0
Upper West Side 0106000020E610000001000000010300000001000000A9... 23 23 Manhattan 5.827181e+07 46554.865062 304 9.7
Upper East Side 0106000020E6100000020000000103000000010000004F... 24 24 Manhattan 5.438999e+07 49821.036696 305 4.7
Gramercy Park - Murray Hill 0106000020E6100000010000000103000000010000008C... 26 26 Manhattan 4.828882e+07 38475.197152 307 4.7
Chelsea - Clinton 0106000020E61000000100000001030000000100000029... 25 25 Manhattan 7.943351e+07 87605.442609 306 7.5
Greenwich Village - Soho 0106000020E610000001000000010300000001000000AA... 27 27 Manhattan 4.023911e+07 50948.825728 308 7.5
Union Square - Lower East Side 0106000020E61000000100000001030000000100000082... 28 28 Manhattan 5.732039e+07 34713.209340 309 6.8
Lower Manhattan 0106000020E6100000020000000103000000010000006A... 29 29 Manhattan 3.513227e+07 50752.735123 310 6.8
Long Island City - Astoria 0106000020E610000001000000010300000001000000D2... 30 30 Queens 1.923020e+08 72324.762815 401 10.6
West Queens 0106000020E610000002000000010300000001000000A6... 31 31 Queens 3.246549e+08 116570.277413 402 28.0
Bayside - Little Neck 0106000020E61000000100000001030000000100000036... 33 33 Queens 2.145688e+08 70215.833085 404 8.8
Fresh Meadows 0106000020E610000001000000010300000001000000DD... 35 35 Queens 1.534321e+08 61672.825322 406 8.8
Ridgewood - Forest Hills 0106000020E610000001000000010300000001000000A3... 34 34 Queens 2.652703e+08 87164.991021 405 9.6
Southwest Queens 0106000020E61000000400000001030000000100000007... 36 36 Queens 2.725265e+08 123610.729914 407 13.1
Port Richmond 0106000020E61000000100000001030000000100000041... 40 40 Staten Island 1.645195e+08 86322.590205 501 9.6
Stapleton - St. George 0106000020E61000000100000001030000000100000041... 41 41 Staten Island 3.272437e+08 107053.886650 502 9.6
Willowbrook 0106000020E61000000200000001030000000100000010... 42 42 Staten Island 4.131080e+08 117827.805092 503 11.7
In [9]:
#The geo place names are grouped as keys in a Pretty Dictionary where the keys containing the 42 neighborhoods will be used.
neighborhood_groups = airquality.groupby('Geo Place Name').groups

Here the Pretty Dictionary containing the 42 neighborhoods will be used to compare with the UNF index and if the strings in either do not match then the geo place name will be replaced by the corresponding UNF index value containing the correct spelling, spacing, etc. This is important as the airquality and UNF datasets will merge based on the 42 neighborhoods from their columns.

In [10]:
airquality = airquality.replace({x: y for x, y in zip(
        sorted(list(neighborhood_groups.keys())), 
        sorted(list(UNF.index))) if x!=y})
In [11]:
#The air pollutants/health cases with name and time period are grouped as keys in a Pretty Dictionary.
airpollutants = airquality.groupby('Air Pollutant').groups
In [12]:
#Iterating through the Pretty Dictionary to obtain the keys (pollutants/health cases)
pollutants = [x for x in airpollutants]
In [13]:
#The airquality and UNF datasets are merged based on the neighborhoods, including setting the airpollutants as new columns
for n in airpollutants:
    UNF = pd.concat(
        [UNF, 
         airquality.loc[airpollutants[n]]
                 .drop('index', axis=1)
                 .drop_duplicates()
                 .set_index('Geo Place Name')['Data Value']], 
                    axis = 1).reindex(UNF.index).rename({'Data Value': n}, axis = 1)
UNF
Out[13]:
the_geom cartodb_id objectid borough shape_area shape_leng uhfcode no_insurance_coverage Air Toxics Concentrations- Average Benzene Concentrations 2005 Annual Average Concentration Air Toxics Concentrations- Average Benzene Concentrations 2011 Annual Average Concentration Air Toxics Concentrations- Average Formaldehyde Concentrations 2005 Annual Average Concentration Air Toxics Concentrations- Average Formaldehyde Concentrations 2011 Annual Average Concentration Boiler Emissions- Total NOx Emissions 2013 Number per km2 Boiler Emissions- Total NOx Emissions 2015 Number per km2 Boiler Emissions- Total PM2.5 Emissions 2013 Number per km2 Boiler Emissions- Total PM2.5 Emissions 2015 Number per km2 Boiler Emissions- Total SO2 Emissions 2013 Number per km2 Boiler Emissions- Total SO2 Emissions 2015 Number per km2 Fine Particulate Matter (PM2.5) Annual Average 2009 Mean Fine Particulate Matter (PM2.5) Annual Average 2010 Mean Fine Particulate Matter (PM2.5) Annual Average 2011 Mean Fine Particulate Matter (PM2.5) Annual Average 2012 Mean Fine Particulate Matter (PM2.5) Annual Average 2013 Mean Fine Particulate Matter (PM2.5) Annual Average 2014 Mean Fine Particulate Matter (PM2.5) Annual Average 2015 Mean Fine Particulate Matter (PM2.5) Annual Average 2016 Mean Fine Particulate Matter (PM2.5) Annual Average 2017 Mean Fine Particulate Matter (PM2.5) Annual Average 2018 Mean Fine Particulate Matter (PM2.5) Summer 2009 Mean Fine Particulate Matter (PM2.5) Summer 2010 Mean Fine Particulate Matter (PM2.5) Summer 2011 Mean Fine Particulate Matter (PM2.5) Summer 2012 Mean Fine Particulate Matter (PM2.5) Summer 2013 Mean Fine Particulate Matter (PM2.5) Summer 2014 Mean Fine Particulate Matter (PM2.5) Summer 2015 Mean Fine Particulate Matter (PM2.5) Summer 2016 Mean Fine Particulate Matter (PM2.5) Summer 2017 Mean Fine Particulate Matter (PM2.5) Summer 2018 Mean Fine Particulate Matter (PM2.5) Winter 2008-09 Mean Fine Particulate Matter (PM2.5) Winter 2009-10 Mean ... O3-Attributable Asthma Hospitalizations 2012-2014 Estimated Annual Rate- Children 0 to 17 Yrs Old O3-Attributable Asthma Hospitalizations 2015-2017 Estimated Annual Rate- 18 Yrs and Older O3-Attributable Asthma Hospitalizations 2015-2017 Estimated Annual Rate- Children 0 to 17 Yrs Old O3-Attributable Cardiac and Respiratory Deaths 2009-2011 Estimated Annual Rate O3-Attributable Cardiac and Respiratory Deaths 2012-2014 Estimated Annual Rate O3-Attributable Cardiac and Respiratory Deaths 2015-2017 Estimated Annual Rate Ozone (O3) 2-Year Summer Average 2009-2010 Mean Ozone (O3) Summer 2009 Mean Ozone (O3) Summer 2010 Mean Ozone (O3) Summer 2011 Mean Ozone (O3) Summer 2012 Mean Ozone (O3) Summer 2013 Mean Ozone (O3) Summer 2014 Mean Ozone (O3) Summer 2015 Mean Ozone (O3) Summer 2016 Mean Ozone (O3) Summer 2017 Mean Ozone (O3) Summer 2018 Mean PM2.5-Attributable Asthma Emergency Department Visits 2009-2011 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2009-2011 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Asthma Emergency Department Visits 2012-2014 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2012-2014 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Asthma Emergency Department Visits 2015-2017 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2015-2017 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2009-2011 Estimated Annual Rate PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2012-2014 Estimated Annual Rate PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2015-2017 Estimated Annual Rate PM2.5-Attributable Deaths 2009-2011 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Deaths 2012-2014 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Deaths 2015-2017 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2009-2011 Estimated Annual Rate PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2012-2014 Estimated Annual Rate PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2015-2017 Estimated Annual Rate Sulfur Dioxide (SO2) Winter 2008-09 Mean Sulfur Dioxide (SO2) Winter 2009-10 Mean Sulfur Dioxide (SO2) Winter 2010-11 Mean Sulfur Dioxide (SO2) Winter 2011-12 Mean Sulfur Dioxide (SO2) Winter 2012-13 Mean Sulfur Dioxide (SO2) Winter 2013-14 Mean Sulfur Dioxide (SO2) Winter 2014-15 Mean Sulfur Dioxide (SO2) Winter 2015-16 Mean
uhf_neigh
Pelham - Throgs Neck 0106000020E61000000500000001030000000100000005... 5 5 Bronx 3.865737e+08 250903.372273 104 16.1 2.7 1.3 3.2 2.0 24.9 23.6 0.5 0.4 4.4 2.8 10.59 9.68 10.50 9.23 8.74 8.97 8.93 7.50 7.52 7.00 10.44 11.87 11.46 10.29 10.26 8.55 9.68 8.06 9.29 8.39 13.30 10.14 ... 36.5 7.0 28.7 4.5 5.5 4.8 28.68 26.72 34.31 34.24 35.44 32.06 31.93 31.41 33.63 29.79 31.52 57.5 121.9 58.778219 133.938066 44.6 105.2 19.3 13.904866 19.2 54.5 45.398945 42.8 19.7 13.872216 15.9 5.15 3.34 4.27 2.50 1.54 1.84 0.96 0.28
Coney Island - Sheepshead Bay 0106000020E61000000100000001030000000100000069... 18 18 Brooklyn 2.288309e+08 101869.349860 210 14.1 2.4 1.7 2.5 2.1 23.7 23.5 0.1 0.1 0.9 0.7 9.55 8.89 9.44 8.30 8.11 8.37 7.72 6.75 6.83 6.55 10.38 11.35 11.05 9.89 9.71 7.99 8.75 7.66 8.22 7.87 11.12 9.05 ... 7.3 2.8 6.7 8.9 8.0 8.5 28.41 29.64 36.52 36.56 37.08 33.88 32.61 35.01 35.62 31.86 32.50 19.8 35.1 17.941715 29.446572 18.2 31.4 22.3 15.009565 20.0 63.4 49.627644 53.1 15.4 13.689647 14.7 3.21 2.21 2.59 1.14 0.70 0.84 0.43 0.18
Flushing - Clearview 0106000020E61000000200000001030000000100000005... 32 32 Queens 3.622995e+08 125334.924243 403 18.0 1.9 1.4 2.7 1.9 18.7 17.0 0.6 0.4 5.1 3.0 10.16 9.34 10.05 8.90 8.39 8.65 8.45 7.22 7.27 6.90 10.23 11.58 11.24 10.07 10.09 8.19 9.32 7.80 8.88 8.35 12.74 9.54 ... 8.8 1.4 8.5 5.4 5.9 5.8 28.58 26.29 33.99 33.92 34.46 31.43 32.01 31.88 33.44 30.26 31.28 9.3 38.0 9.559987 29.264516 7.9 29.4 14.1 9.199639 12.8 43.6 36.505364 36.1 11.3 8.850107 10.2 4.49 3.01 3.85 1.97 1.17 1.85 0.74 0.27
Jamaica 0106000020E61000000200000001030000000100000004... 37 37 Queens 3.645499e+08 123620.448330 408 17.9 1.8 1.3 2.4 1.9 13.2 13.1 0.1 0.1 0.5 0.4 9.95 9.25 9.57 8.48 8.27 8.46 8.20 6.99 7.08 6.69 10.13 11.39 11.15 9.98 10.07 8.10 9.08 7.57 8.62 8.25 12.69 9.68 ... 23.7 4.3 18.0 5.2 5.4 5.1 27.77 26.14 33.52 32.95 33.78 31.12 32.63 32.04 33.86 30.93 31.33 41.6 115.8 39.600368 91.403682 29.7 69.6 18.9 14.390081 19.4 42.7 36.503670 31.7 12.7 9.847395 10.5 3.53 2.52 2.97 1.45 0.77 1.24 0.43 0.25
Southeast Queens 0106000020E6100000010000000103000000010000005E... 38 38 Queens 3.616017e+08 129288.280297 409 7.8 1.8 1.1 2.4 1.8 8.1 8.1 0.0 0.0 0.3 0.3 9.35 8.65 9.17 8.04 7.85 8.02 7.90 6.51 6.75 6.42 9.65 10.98 10.79 9.61 9.75 7.72 8.75 7.06 8.35 8.05 11.72 8.85 ... 24.7 3.0 16.1 4.3 4.3 4.1 28.65 27.59 34.29 33.59 34.81 31.79 33.60 32.51 34.30 31.72 31.82 27.4 70.5 21.888064 53.846387 17.9 39.5 14.5 11.220565 17.3 34.4 27.362139 26.3 10.0 6.918950 8.2 3.18 2.21 2.56 1.30 0.60 1.14 0.41 0.26
Rockaway 0106000020E610000002000000010300000001000000AD... 39 39 Queens 2.657288e+08 232823.135817 410 15.0 1.4 0.8 2.0 1.4 6.1 6.1 0.0 0.0 0.0 0.0 8.75 7.99 8.44 7.36 7.61 7.69 7.16 5.98 6.32 6.06 9.60 10.74 10.59 9.41 9.45 7.37 8.29 6.87 7.74 7.76 10.21 7.95 ... 18.0 4.8 11.0 9.0 9.4 7.7 30.47 33.59 38.98 39.03 40.30 36.84 36.25 37.44 38.18 35.19 35.18 47.8 111.8 42.293047 57.903796 39.0 55.0 19.8 13.874151 21.0 69.8 49.492853 50.2 18.8 10.214737 16.9 2.39 1.90 1.90 0.88 0.51 0.64 0.31 0.20
South Beach - Tottenville 0106000020E6100000020000000103000000010000000C... 43 43 Staten Island 7.311307e+08 175067.708940 504 11.7 1.1 1.0 2.2 1.7 2.0 2.0 0.0 0.0 0.0 0.0 9.63 8.71 9.29 8.28 7.82 8.20 7.29 6.59 6.58 6.18 10.37 11.25 10.96 9.78 9.13 7.57 8.43 7.54 7.88 7.35 11.62 9.00 ... 6.4 1.7 5.1 7.3 7.2 7.7 30.30 27.77 36.53 35.93 35.27 32.66 31.96 34.07 36.17 28.95 30.34 11.8 21.0 12.318570 19.593401 9.2 13.7 15.2 11.393859 15.6 48.0 44.682959 45.9 11.7 11.804588 12.9 1.84 1.01 1.56 0.66 0.39 0.73 0.22 0.11
Kingsbridge - Riverdale 0106000020E6100000010000000103000000010000002A... 2 2 Bronx 1.332914e+08 57699.154353 101 8.4 2.9 1.6 3.2 2.2 42.5 35.8 2.0 1.3 17.6 9.1 11.03 10.09 10.65 9.27 8.88 9.00 9.17 7.50 7.41 6.95 10.38 11.83 11.30 10.15 10.01 8.65 9.63 7.95 9.46 8.25 14.66 11.50 ... 22.7 4.0 15.1 8.6 10.5 8.3 28.37 23.67 31.91 31.24 33.72 30.37 30.45 28.72 32.46 27.53 29.80 25.4 60.7 27.131859 82.297276 25.8 65.8 18.3 14.010778 18.2 77.6 69.363552 63.0 18.6 13.828670 14.8 6.62 4.16 5.31 3.71 2.23 1.71 1.00 0.30
Northeast Bronx 0106000020E610000001000000010300000001000000D5... 3 3 Bronx 1.813708e+08 88219.319110 102 7.0 2.8 1.4 3.2 2.0 33.8 33.3 0.3 0.3 2.2 1.6 10.68 9.65 10.48 9.11 8.73 9.00 9.13 7.55 7.46 6.99 10.33 11.83 11.39 10.23 10.17 8.71 9.73 7.93 9.25 8.33 13.58 10.23 ... 42.4 6.6 33.3 5.4 6.6 6.2 28.64 26.82 33.96 33.44 35.09 31.68 31.49 29.93 33.21 29.01 31.24 37.6 73.4 57.702278 139.919783 48.4 108.6 16.2 12.960850 18.5 57.0 47.873417 47.3 18.6 14.238585 15.4 5.38 3.37 4.25 2.80 1.53 1.61 1.11 0.29
Fordham - Bronx Park 0106000020E610000001000000010300000001000000A5... 4 4 Bronx 1.407724e+08 59711.871991 103 16.7 2.7 1.6 3.2 2.2 71.0 65.0 3.0 2.3 24.5 16.6 11.10 10.26 10.77 9.47 9.06 9.19 9.14 7.57 7.52 7.19 10.60 11.97 11.48 10.35 10.29 8.76 9.73 8.05 9.39 8.55 14.47 11.40 ... 51.0 10.0 39.1 4.0 4.2 4.0 27.48 24.47 32.53 32.08 34.08 30.79 30.70 29.53 32.78 28.34 30.60 68.7 122.8 77.591185 191.400760 64.1 153.6 18.8 14.532391 21.2 49.6 43.537669 41.4 20.5 17.084194 19.4 9.48 6.03 7.67 5.06 3.15 2.71 1.54 0.46
Crotona - Tremont 0106000020E610000001000000010300000001000000B7... 6 6 Bronx 1.068978e+08 66676.089072 105 16.0 3.0 1.6 3.4 2.1 62.5 56.0 2.0 1.3 16.9 8.8 11.76 10.99 11.45 10.22 9.75 9.82 9.67 8.18 8.16 7.53 11.33 12.63 12.13 11.01 10.94 9.29 10.33 8.80 10.09 8.89 15.10 12.21 ... 44.8 9.8 32.5 2.7 3.4 3.4 26.72 23.08 31.63 31.46 33.42 30.15 30.07 29.65 32.31 27.80 29.96 131.3 200.2 118.077027 214.141350 87.1 167.2 21.6 18.089985 23.3 47.4 42.577251 38.4 25.1 20.751597 21.4 9.36 6.10 7.79 4.92 3.28 2.86 1.35 0.43
High Bridge - Morrisania 0106000020E61000000100000001030000000100000002... 7 7 Bronx 8.589956e+07 50241.649324 106 16.0 3.0 1.6 3.6 2.3 78.0 72.2 2.4 1.9 19.7 12.9 11.80 11.00 11.44 10.26 9.83 9.87 9.60 8.16 8.16 7.68 11.44 12.66 12.14 11.03 10.95 9.27 10.27 8.85 10.13 9.06 15.06 12.17 ... 48.7 12.0 39.4 2.8 3.7 3.9 26.33 22.64 31.25 31.12 33.23 29.92 29.91 29.93 32.34 27.72 29.68 130.1 249.3 117.382294 232.543986 98.1 188.6 24.1 17.832506 23.5 55.8 47.644820 43.0 27.6 23.463406 25.8 8.99 5.99 7.62 4.75 3.33 2.80 1.20 0.39
Hunts Point - Mott Haven 0106000020E610000001000000010300000001000000EE... 8 8 Bronx 1.128093e+08 62182.674773 107 16.0 2.8 1.4 3.5 2.1 36.8 35.5 0.4 0.3 3.3 1.7 11.45 10.48 11.24 10.02 9.57 9.75 9.62 8.26 8.26 7.85 9.74 11.12 10.67 9.49 9.39 7.64 10.35 8.97 10.20 9.23 12.26 8.92 ... 57.8 14.2 40.7 3.1 3.7 3.6 27.68 25.23 33.34 33.42 34.98 31.59 31.41 31.66 33.57 29.41 30.62 138.1 251.3 130.592177 233.188371 104.6 194.7 25.0 19.715644 24.3 58.8 46.508706 45.4 30.2 25.507364 26.5 5.22 3.54 4.50 2.63 1.81 1.87 0.82 0.25
Greenpoint 0106000020E6100000010000000103000000010000008B... 9 9 Brooklyn 1.047836e+08 48036.348146 201 10.2 3.7 1.6 3.5 2.2 18.9 18.8 0.1 0.0 0.4 0.3 11.93 10.57 11.51 10.27 10.00 10.54 10.49 9.46 8.98 8.72 12.17 13.32 12.84 11.69 11.54 10.37 11.00 9.80 10.79 9.85 14.25 10.22 ... 6.4 1.0 4.8 3.6 3.5 3.1 27.11 25.56 32.54 31.61 32.73 29.77 30.47 30.97 32.96 28.98 28.98 28.2 59.6 26.907195 43.518447 19.9 27.4 20.5 15.839762 15.9 45.6 37.077523 29.9 10.0 8.229991 6.6 4.25 2.93 3.66 1.95 1.17 1.39 0.58 0.19
Downtown - Heights - Slope 0106000020E6100000010000000103000000010000006E... 10 10 Brooklyn 1.758001e+08 111232.015567 202 8.0 3.7 1.7 3.2 2.2 32.0 32.5 0.1 0.2 0.8 1.2 11.50 10.49 11.14 9.90 9.46 9.99 9.89 8.86 8.35 7.85 11.71 12.73 12.26 11.12 10.95 9.87 10.29 9.15 10.12 8.91 14.16 10.67 ... 17.1 2.3 12.5 4.2 4.3 3.2 26.11 23.08 30.94 29.54 30.66 28.04 29.32 29.76 31.98 27.92 28.54 40.7 89.1 35.784095 76.927883 24.1 46.4 19.8 15.670407 14.4 40.5 36.041392 26.5 13.1 10.239586 7.8 4.14 2.65 3.42 1.76 0.91 1.15 0.46 0.18
Bedford Stuyvesant - Crown Heights 0106000020E610000001000000010300000001000000E6... 11 11 Brooklyn 1.662263e+08 69711.014325 203 13.1 2.5 1.3 3.0 2.0 31.7 31.9 0.1 0.2 0.9 1.0 10.75 9.93 10.29 9.13 8.75 9.16 8.87 7.94 7.53 7.27 10.92 11.96 11.54 10.41 10.32 8.97 9.49 8.28 9.14 8.48 13.62 10.30 ... 44.8 5.4 33.9 4.8 5.3 4.9 26.35 24.33 32.27 31.43 32.12 29.66 30.33 31.18 32.98 29.39 30.20 95.4 178.4 91.183292 164.790819 68.1 124.6 23.9 17.738419 22.3 55.9 45.498822 41.8 16.3 14.126735 12.4 4.62 3.19 3.91 1.88 1.11 1.28 0.52 0.22
East New York 0106000020E610000001000000010300000001000000F2... 12 12 Brooklyn 1.551405e+08 75378.418333 204 14.2 2.3 1.4 2.8 2.1 14.7 14.7 0.0 0.0 0.1 0.1 10.60 9.79 10.09 8.94 8.69 9.04 8.72 7.80 7.52 7.06 10.08 11.26 10.90 9.73 9.68 8.08 9.52 8.27 9.05 8.41 12.87 9.41 ... 36.1 5.0 34.4 3.5 4.0 4.1 27.97 26.28 33.97 33.50 33.97 31.51 31.97 32.58 34.26 30.90 31.71 85.0 153.2 84.949705 141.583115 71.4 118.4 22.4 16.933933 22.8 45.9 38.567522 37.1 13.9 13.963273 13.2 3.89 2.86 3.36 1.57 1.01 1.17 0.47 0.21
Sunset Park 0106000020E61000000200000001030000000100000011... 13 13 Brooklyn 1.118635e+08 100114.866691 205 21.3 3.2 1.3 3.2 2.0 13.4 13.9 0.0 0.1 0.1 0.5 11.04 10.21 10.84 9.59 9.12 9.63 9.45 8.40 8.09 7.72 11.45 12.46 12.03 10.87 10.62 9.45 9.99 8.93 9.75 8.78 13.49 10.61 ... 11.6 2.9 6.3 4.1 3.1 3.1 27.71 24.63 32.71 31.50 32.29 29.67 30.60 31.29 33.28 29.26 29.49 35.0 51.3 27.980286 45.544236 18.6 34.4 17.1 11.746441 12.4 38.7 30.858343 28.0 12.5 9.429039 7.4 3.79 2.32 3.07 1.49 0.76 1.05 0.43 0.17
Borough Park 0106000020E610000001000000010300000001000000AE... 14 14 Brooklyn 1.718763e+08 63216.738141 206 15.5 2.5 1.5 2.9 2.0 34.8 34.4 0.2 0.2 1.5 1.1 10.27 9.61 10.07 8.89 8.49 8.87 8.44 7.45 7.27 6.99 10.77 11.73 11.34 10.20 10.02 8.60 9.17 8.08 8.80 8.17 12.56 10.05 ... 3.5 1.6 3.0 5.3 5.0 4.8 27.10 25.54 33.38 32.70 33.35 30.61 30.68 32.14 33.54 29.72 30.44 13.2 19.5 11.194470 18.654506 9.3 15.8 19.9 13.918530 16.1 50.3 42.140913 39.2 11.8 9.063972 8.8 4.28 2.77 3.48 1.61 0.87 1.08 0.48 0.20
East Flatbush - Flatbush 0106000020E610000001000000010300000001000000CA... 15 15 Brooklyn 1.937373e+08 73949.350573 207 11.6 2.3 1.4 2.8 2.1 33.5 33.2 0.3 0.2 2.3 1.7 10.47 9.80 10.15 8.98 8.60 8.97 8.59 7.64 7.36 7.04 10.81 11.81 11.42 10.28 10.17 8.74 9.29 8.12 8.92 8.26 13.08 10.26 ... 36.6 3.8 27.6 3.9 4.7 4.8 27.11 25.47 33.33 32.67 33.38 30.73 30.94 32.20 33.66 30.13 30.95 57.9 115.8 49.929774 102.374408 41.9 84.2 18.5 13.421584 18.3 43.2 37.275549 36.2 10.5 10.563806 9.7 4.60 3.12 3.80 1.78 1.00 1.14 0.49 0.21
Canarsie - Flatlands 0106000020E610000002000000010300000001000000E0... 16 16 Brooklyn 3.598796e+08 142322.645199 208 7.4 2.4 1.1 2.8 1.8 6.7 6.6 0.0 0.0 0.0 0.0 9.85 9.12 9.55 8.37 8.18 8.48 8.10 7.12 7.02 6.70 10.35 11.44 11.12 9.95 9.85 8.24 8.97 7.77 8.54 8.05 12.12 9.45 ... 22.5 2.9 19.8 5.7 5.9 6.0 29.00 28.97 36.12 35.91 36.60 33.70 33.25 34.70 35.79 32.45 32.96 40.9 81.7 35.080464 70.948892 31.4 61.4 18.3 13.058780 18.3 49.7 39.489024 40.0 12.5 11.066099 11.9 3.22 2.33 2.67 1.21 0.77 0.86 0.40 0.18
Bensonhurst - Bay Ridge 0106000020E610000001000000010300000001000000B3... 17 17 Brooklyn 1.603987e+08 73089.457275 209 22.2 2.8 1.6 2.7 2.0 26.5 26.1 0.2 0.2 1.7 1.2 9.91 9.18 9.78 8.60 8.24 8.62 8.13 7.11 7.06 6.67 10.59 11.56 11.19 10.03 9.77 8.27 8.95 7.94 8.52 7.83 11.82 9.49 ... 4.7 1.4 4.7 7.2 6.5 6.3 27.97 26.86 34.50 33.85 34.28 31.44 31.32 32.83 34.25 30.05 30.90 11.3 20.7 10.405043 18.085161 8.5 16.8 16.5 11.120827 14.2 53.6 41.317065 40.5 10.4 8.863740 8.9 3.37 2.10 2.72 1.25 0.67 0.95 0.43 0.17
Williamsburg - Bushwick 0106000020E610000001000000010300000001000000B1... 19 19 Brooklyn 1.066612e+08 49012.822810 211 23.9 2.8 1.4 3.1 2.1 27.8 27.8 0.1 0.1 0.3 0.3 11.36 10.33 10.88 9.70 9.36 9.84 9.61 8.67 8.22 8.11 12.74 13.92 13.48 12.31 12.20 10.93 10.20 8.99 9.87 9.31 15.14 11.25 ... 33.4 4.6 20.5 3.7 3.9 3.7 26.65 24.76 32.38 31.54 32.28 29.70 30.41 31.10 32.99 29.33 29.64 106.8 184.6 97.152228 165.258535 67.3 107.9 26.9 19.202565 21.0 50.0 41.089969 34.7 18.2 15.939331 11.0 4.78 3.33 4.12 2.05 1.25 1.45 0.58 0.22
Washington Heights - Inwood 0106000020E61000000600000001030000000100000007... 20 20 Manhattan 9.890333e+07 67477.648187 301 13.4 4.1 2.4 3.9 2.8 115.3 100.6 5.8 4.2 51.0 32.0 11.55 10.71 11.12 9.89 9.48 9.49 9.36 7.81 7.79 7.32 10.76 12.11 11.58 10.45 10.35 8.88 9.91 8.45 9.87 8.65 15.02 12.05 ... 19.1 3.6 19.7 3.2 3.9 3.3 25.92 21.82 30.54 30.13 32.66 29.34 29.52 28.95 31.92 26.92 28.95 44.5 138.5 40.422948 111.595412 32.9 81.6 18.1 13.996671 17.1 46.0 38.877338 33.2 12.5 10.483500 10.3 11.12 7.28 9.28 6.14 4.24 3.35 1.50 0.50
Central Harlem - Morningside Heights 0106000020E610000001000000010300000001000000AE... 21 21 Manhattan 6.139621e+07 50891.462079 302 12.0 3.9 2.1 4.2 2.6 82.1 77.8 2.0 1.6 15.7 10.7 11.60 10.62 11.13 9.99 9.70 9.73 9.36 7.95 7.93 7.53 11.36 12.49 11.93 10.85 10.76 9.12 9.99 8.67 9.91 8.90 14.56 11.46 ... 46.2 6.1 39.2 4.3 4.7 4.4 25.43 21.52 29.75 29.40 31.71 28.40 28.58 28.98 31.35 26.51 28.41 137.0 291.1 116.419865 253.139192 95.1 193.1 19.7 16.211879 20.2 63.6 53.094419 45.4 18.8 16.518882 14.9 8.21 5.59 7.04 4.46 3.08 2.64 1.09 0.35
East Harlem 0106000020E61000000400000001030000000100000009... 22 22 Manhattan 6.089727e+07 53979.192786 303 18.0 4.2 2.1 4.2 2.6 55.8 50.1 1.3 0.7 11.6 4.8 11.55 10.41 11.12 9.98 9.73 9.84 9.51 8.19 8.11 7.39 10.95 12.31 11.81 10.63 10.49 8.88 10.18 8.90 10.05 8.72 13.58 10.22 ... 47.3 9.1 36.9 4.7 5.3 5.2 25.70 22.84 30.52 30.25 32.25 28.87 28.92 29.58 31.62 26.91 28.83 147.1 299.4 129.634838 241.329056 111.6 215.5 23.3 20.687630 25.5 69.9 57.850564 54.2 29.2 22.177993 20.3 7.04 4.89 6.10 3.71 2.57 2.42 1.00 0.30
Upper West Side 0106000020E610000001000000010300000001000000A9... 23 23 Manhattan 5.827181e+07 46554.865062 304 9.7 3.9 2.4 4.0 2.7 247.9 210.5 11.4 7.0 99.7 50.9 12.18 11.01 11.49 10.46 10.35 10.42 9.78 8.49 8.33 8.16 12.13 13.03 12.46 11.44 11.38 9.79 10.39 9.12 10.13 9.48 14.69 11.26 ... 9.1 1.5 6.6 4.1 4.8 4.6 24.37 21.31 28.68 27.89 30.17 26.93 27.40 28.12 30.54 25.57 27.20 25.5 74.2 23.489180 63.929926 23.2 51.9 12.0 9.568119 12.3 48.9 44.148030 40.5 11.6 10.194974 8.5 10.87 7.48 9.31 5.92 3.91 3.49 1.40 0.44
Upper East Side 0106000020E6100000020000000103000000010000004F... 24 24 Manhattan 5.438999e+07 49821.036696 305 4.7 4.5 2.5 4.5 2.8 269.8 225.9 10.8 5.7 95.0 39.4 12.88 11.83 12.10 11.19 11.10 11.15 10.20 9.07 8.85 8.68 12.91 13.66 13.11 12.14 12.18 10.43 10.94 9.66 10.40 10.03 15.30 11.89 ... 7.6 0.7 5.6 4.0 4.3 3.8 22.97 20.87 28.21 27.52 29.24 26.32 26.66 28.07 30.17 25.24 26.97 9.4 35.5 7.980573 24.439332 6.6 18.6 11.1 9.181452 11.0 45.3 43.366522 35.4 9.2 8.379345 6.7 12.12 8.50 10.51 6.31 4.16 3.84 1.49 0.45
Gramercy Park - Murray Hill 0106000020E6100000010000000103000000010000008C... 26 26 Manhattan 4.828882e+07 38475.197152 307 4.7 5.3 2.8 5.3 2.8 284.7 256.2 9.0 5.5 78.8 41.5 15.03 14.24 13.93 13.23 13.20 13.23 11.72 10.76 10.33 10.30 15.05 15.38 14.82 13.98 14.14 12.38 12.47 11.17 11.53 11.64 17.61 14.30 ... 9.0 1.0 9.0 3.6 3.4 3.6 19.27 16.13 23.90 22.59 24.05 21.93 22.89 25.06 27.51 22.12 23.99 20.7 69.7 23.957592 57.635436 16.5 44.5 12.9 12.083862 12.0 47.9 45.239369 35.7 8.6 8.893317 6.9 9.80 6.73 8.37 4.97 3.03 3.15 1.28 0.40
Chelsea - Clinton 0106000020E61000000100000001030000000100000029... 25 25 Manhattan 7.943351e+07 87605.442609 306 7.5 4.9 3.1 4.6 2.9 204.8 181.5 7.7 4.9 67.4 36.4 14.24 13.21 13.27 12.42 12.41 12.53 11.39 10.32 9.91 9.97 14.29 14.80 14.24 13.33 13.38 11.83 12.01 10.75 11.34 11.25 16.68 13.18 ... 13.3 1.1 9.4 3.4 3.7 3.4 21.26 18.19 25.62 24.20 26.00 23.53 24.61 26.11 28.76 23.43 24.81 25.3 88.6 28.516622 75.558132 20.4 53.6 11.7 11.788874 11.7 39.7 40.184208 31.7 9.0 9.389808 6.9 8.37 5.65 7.09 4.34 2.57 2.73 1.13 0.36
Greenwich Village - Soho 0106000020E610000001000000010300000001000000AA... 27 27 Manhattan 4.023911e+07 50948.825728 308 7.5 4.7 2.6 4.0 2.6 132.5 121.3 4.1 2.6 32.9 17.8 12.75 11.56 12.04 10.99 10.81 11.17 10.60 9.52 9.02 8.79 12.90 13.66 13.12 12.10 12.02 10.79 11.04 9.84 10.66 9.91 15.16 11.42 ... 5.4 0.6 1.5 3.4 2.8 2.9 23.82 20.56 27.87 26.21 27.85 25.22 26.66 27.35 30.03 25.23 26.35 9.2 24.5 7.241535 18.093165 6.5 14.2 9.6 7.287550 8.3 41.0 31.690990 25.5 5.4 5.277515 4.7 7.35 4.78 6.14 3.58 1.94 2.24 0.88 0.31
Union Square - Lower East Side 0106000020E61000000100000001030000000100000082... 28 28 Manhattan 5.732039e+07 34713.209340 309 6.8 5.0 2.3 4.0 2.5 126.1 117.5 3.0 2.0 24.9 14.1 12.08 10.87 11.44 10.35 10.15 10.53 10.06 9.02 8.52 8.14 12.26 13.11 12.59 11.54 11.46 10.20 10.53 9.32 10.19 9.28 14.47 10.64 ... 14.1 2.8 15.5 4.0 4.7 4.5 23.95 21.16 28.38 26.94 28.41 25.73 26.93 27.73 30.14 25.58 26.82 45.5 151.9 36.212139 114.774486 31.6 102.2 18.5 12.657789 15.6 58.8 47.285759 45.1 15.5 11.963810 10.7 7.91 5.25 6.66 3.80 2.12 2.48 0.97 0.33
Lower Manhattan 0106000020E6100000020000000103000000010000006A... 29 29 Manhattan 3.513227e+07 50752.735123 310 6.8 6.3 2.1 4.2 2.3 118.7 114.9 1.7 1.2 13.7 8.3 13.06 12.19 12.28 11.32 11.06 11.36 10.54 9.53 9.01 8.94 13.16 13.75 13.21 12.25 12.22 10.91 11.01 9.80 10.48 10.07 15.79 12.37 ... 6.2 2.2 5.8 2.8 2.5 2.7 22.73 18.88 26.89 25.07 26.44 24.26 25.98 26.98 29.73 24.66 25.92 25.7 57.2 24.137901 52.250935 19.2 35.4 14.0 12.356072 10.9 36.4 34.365831 27.3 5.8 6.081366 6.6 4.57 2.89 3.78 2.13 1.09 1.37 0.55 0.20
Long Island City - Astoria 0106000020E610000001000000010300000001000000D2... 30 30 Queens 1.923020e+08 72324.762815 401 10.6 2.7 1.8 3.6 2.3 30.6 29.3 0.8 0.7 6.7 5.0 11.40 10.05 11.02 9.84 9.60 9.98 9.78 8.65 8.42 8.16 11.60 12.81 12.33 11.18 11.07 9.59 10.46 9.23 10.23 9.43 13.59 9.75 ... 11.2 2.3 6.4 3.5 4.2 4.3 27.57 26.08 33.01 32.66 33.91 30.62 30.71 31.43 33.15 29.12 29.66 28.1 79.4 25.085095 48.830484 21.8 46.1 15.6 11.377397 14.7 39.8 31.593392 31.4 12.3 9.751318 9.3 5.11 3.63 4.50 2.49 1.68 1.89 0.79 0.24
West Queens 0106000020E610000002000000010300000001000000A6... 31 31 Queens 3.246549e+08 116570.277413 402 28.0 2.2 1.6 3.4 2.2 24.6 23.7 0.3 0.2 2.3 1.1 10.99 9.89 10.60 9.46 9.13 9.47 9.17 8.14 7.93 7.57 11.13 12.34 11.92 10.77 10.71 9.05 9.98 8.71 9.58 8.89 13.50 9.84 ... 11.0 2.3 9.0 3.0 3.4 3.5 27.28 25.70 33.17 33.00 33.58 30.68 30.87 31.57 33.12 29.44 30.33 15.6 75.2 13.563269 49.015452 14.7 60.2 13.2 8.840457 12.7 33.2 26.294120 27.1 9.6 7.460492 8.6 5.38 3.84 4.79 2.44 1.60 2.00 0.78 0.25
Bayside - Little Neck 0106000020E61000000100000001030000000100000036... 33 33 Queens 2.145688e+08 70215.833085 404 8.8 1.9 1.2 2.5 1.9 10.4 9.8 0.2 0.2 1.6 0.9 9.72 8.98 9.71 8.55 8.08 8.31 8.26 6.88 7.03 6.48 9.87 11.26 11.01 9.84 9.94 7.96 9.07 7.38 8.65 8.00 12.16 9.10 ... 8.3 1.2 4.4 4.5 4.8 5.3 28.51 26.29 33.51 33.03 33.84 30.76 32.26 31.27 32.99 30.27 30.98 6.7 22.1 6.627942 13.435123 4.9 12.2 12.5 8.655824 11.7 34.5 28.434109 29.7 10.2 6.965867 8.2 3.69 2.41 3.02 1.56 0.75 1.50 0.57 0.27
Fresh Meadows 0106000020E610000001000000010300000001000000DD... 35 35 Queens 1.534321e+08 61672.825322 406 8.8 1.7 1.3 2.3 1.8 15.3 14.3 0.5 0.4 4.3 3.1 10.00 9.25 9.74 8.63 8.21 8.43 8.19 7.03 7.05 6.55 10.09 11.39 11.08 9.92 9.96 8.01 9.07 7.59 8.61 8.02 12.76 9.57 ... 11.9 2.5 13.8 4.8 5.4 5.1 27.97 25.43 33.23 32.93 33.38 30.67 31.80 31.53 33.16 30.07 31.03 17.2 47.7 16.723849 38.055026 12.7 36.2 14.9 9.366114 11.7 43.4 35.218209 30.7 9.7 8.061808 8.5 4.02 2.78 3.47 1.70 0.98 1.61 0.57 0.26
Ridgewood - Forest Hills 0106000020E610000001000000010300000001000000A3... 34 34 Queens 2.652703e+08 87164.991021 405 9.6 2.0 1.5 3.0 2.1 23.6 22.5 0.3 0.2 2.7 1.3 10.44 9.52 9.95 8.83 8.51 8.85 8.51 7.56 7.32 6.99 10.56 11.73 11.35 10.20 10.17 8.49 9.33 8.05 8.85 8.33 13.29 9.73 ... 14.6 1.9 10.0 5.5 6.0 5.3 27.88 25.58 33.32 32.97 33.30 30.77 31.33 31.81 33.48 30.06 30.96 14.9 51.1 14.544830 43.550714 12.8 32.2 15.7 11.237138 14.5 45.7 39.005722 34.7 12.4 10.678280 10.0 4.50 3.25 3.99 1.92 1.21 1.54 0.58 0.23
Southwest Queens 0106000020E61000000400000001030000000100000007... 36 36 Queens 2.725265e+08 123610.729914 407 13.1 1.8 1.4 2.4 1.9 14.5 14.3 0.1 0.1 0.8 0.5 9.96 9.19 9.43 8.32 8.14 8.39 8.05 7.02 6.94 6.56 10.13 11.33 11.03 9.86 9.88 8.06 8.94 7.59 8.43 8.02 12.85 9.67 ... 18.1 2.8 11.3 4.0 4.1 3.8 28.36 26.48 34.04 33.63 34.15 31.68 32.51 32.59 34.34 31.16 31.93 29.8 80.0 23.619282 60.950361 18.6 43.0 19.9 13.301114 18.5 37.1 29.283889 27.6 10.5 8.270584 9.0 3.72 2.76 3.22 1.52 0.93 1.21 0.45 0.23
Port Richmond 0106000020E61000000100000001030000000100000041... 40 40 Staten Island 1.645195e+08 86322.590205 501 9.6 2.5 1.2 2.4 1.8 2.8 2.8 0.0 0.0 0.0 0.0 10.22 9.02 9.73 8.55 8.27 8.79 8.34 7.30 7.19 6.78 10.75 11.74 11.31 10.13 9.57 8.32 9.08 8.22 8.61 7.84 12.46 9.34 ... 22.3 7.7 24.7 5.7 5.0 5.2 29.20 24.42 32.74 31.02 31.06 28.84 30.23 29.99 33.42 27.00 28.48 64.5 92.0 53.993939 85.936899 45.6 66.9 16.4 12.489382 17.9 49.1 41.112088 41.9 16.6 13.969809 17.4 2.49 1.35 2.08 1.04 0.49 0.97 0.31 0.12
Stapleton - St. George 0106000020E61000000100000001030000000100000041... 41 41 Staten Island 3.272437e+08 107053.886650 502 9.6 1.3 1.1 2.3 1.7 4.7 4.6 0.0 0.0 0.4 0.2 9.63 8.64 9.36 8.18 7.90 8.34 7.82 6.80 6.80 6.36 10.36 11.35 10.96 9.78 9.34 7.89 8.68 7.79 8.15 7.46 11.46 8.83 ... 17.3 5.7 15.0 8.4 7.9 8.4 29.44 26.48 34.30 33.17 33.14 30.61 31.14 31.84 34.18 28.83 29.89 42.9 76.1 39.588010 66.092923 32.0 49.5 16.9 12.737080 19.1 54.3 49.556533 50.0 17.3 16.192245 17.6 2.53 1.45 2.08 0.98 0.49 0.91 0.35 0.13
Willowbrook 0106000020E61000000200000001030000000100000010... 42 42 Staten Island 4.131080e+08 117827.805092 503 11.7 1.6 1.1 2.3 1.8 2.1 2.1 0.0 0.0 0.0 0.0 10.10 8.99 9.63 8.52 8.22 8.68 8.01 7.10 7.05 6.63 10.73 11.68 11.30 10.12 9.53 8.12 8.94 8.09 8.35 7.74 12.19 9.27 ... 7.1 2.6 5.6 9.7 9.8 7.7 30.26 26.04 34.45 33.13 32.76 30.48 31.13 31.66 34.68 27.95 29.36 16.0 32.8 15.903198 26.742820 12.9 18.8 17.8 14.048749 16.8 58.3 57.154771 48.4 13.5 13.536328 14.1 2.17 1.18 1.83 0.86 0.44 0.88 0.28 0.12

42 rows × 127 columns

Now, we can see columns for the specific pollutants and health cases with their own time and type of measurements. Also, it has its own average measurement for each of the 42 neighborhoods.

Visualization / Analysis

For the visualization part, creating maps with the use of folium will help analyze what pollutants affect which areas of New York City the most and the least. The same goes for the health cases related to the air pollutants. The best way to accomplish this is to first split the map - one with the concentration of the air pollutants and the other with the health cases related to these pollutants.

In [14]:
#Iterates through pollutants to separate pollutants columns and health case columns
pollCont = [pol for pol in pollutants if 'Attributable' not in pol]
healthEff = [pol for pol in pollutants if pol not in pollCont and 'Ozone' not in pol] 

#Iterates through pollCont for any columns that contain benzene and formaldehyde
BenzeneAvgs = [bz for bz in pollCont if 'Benzene' in bz]  
FormaldehydeAvgs = [f for f in pollCont if 'Formaldehyde' in f]  

#Iterates through pollCont for any columns containing Boiler Emission and each of three pollutants asscoiated to it
BoilerEmissionAvgs = [be for be in pollCont if 'Boiler' in be]   
BoilerEmissionSO2Avgs = [be for be in pollCont if 'Boiler' in be and 'SO2' in be]
BoilerEmissionPMAvgs = [be for be in pollCont if 'Boiler' in be and 'PM' in be]

#Interates through pollCont for each of the air pollutants including annual, summer and winter averages
PMAnnualAvgs = [pm for pm in pollCont if 'Fine Particulate Matter' in pm]
OZAnnualAvgs = [oz for oz in pollCont if 'Ozone' in oz]
NOAnnualAvgs = [no for no in pollCont if 'Nitrogen Dioxide' in no]
SO2AnnualAvgs = [so for so in pollCont if 'Sulfur Dioxide' in so]

#Iterates through healthEff for each of the health cases correlated with the two air pollutants
PMHealthCases = [ast for ast in healthEff if 'PM2.5-Attributable' in ast]
OZHealthCases = [ast for ast in healthEff if 'O3' in ast]

UNF.reset_index(inplace=True)

Some of the data could have large ranges between each other within the air pollutants and the health case data values. The best way to keep within range is to normalize it into a range of 0 and 1. This would keep all the measurements in a shorter range and would be better visualized when applying maps and graphs.

In [15]:
#Function to normalize the values between a 0 to 1 range of each of the split data  
def simplify(df):
  avg = (df - df.min()) / (df.max() - df.min())
  return avg

#We apply the function so that all 42 values in each column is normalized to a value between a range of 0 and 1
#After, they got summed up and divided by the number of columns iterated, which will be the average of certain pollutant/health case. 

UNF['HealthCaseAvg'] = sum(simplify(UNF[column]) \
                               for column in healthEff) / len(healthEff)
UNF['ConcentrationAvg'] = sum([simplify(UNF[column]) \
                                for column in pollCont]) / len(pollCont)

UNF['PM 2.5 Annual Avgs'] = sum([simplify(UNF[column]) \
                          for column in PMAnnualAvgs]) / len(PMAnnualAvgs)
UNF['OZ Annual Avgs'] = sum([simplify(UNF[column]) \
                          for column in OZAnnualAvgs]) / len(OZAnnualAvgs)
UNF['NO Annual Avgs'] = sum([simplify(UNF[column]) \
                          for column in NOAnnualAvgs]) / len(NOAnnualAvgs)
UNF['SO2 Annual Avgs'] = sum([simplify(UNF[column]) \
                          for column in SO2AnnualAvgs]) / len(SO2AnnualAvgs)

UNF['PM 2.5 Health Cases'] = sum([simplify(UNF[column]) \
                          for column in PMHealthCases]) / len(PMHealthCases)  
UNF['OZ Health Cases'] = sum([simplify(UNF[column]) \
                          for column in OZHealthCases]) / len(OZHealthCases) 

UNF['Benzene Avgs'] = sum([simplify(UNF[column]) \
                          for column in BenzeneAvgs]) / len(BenzeneAvgs)  
UNF['Formaldehyde Avgs'] = sum([simplify(UNF[column]) \
                          for column in FormaldehydeAvgs]) / len(FormaldehydeAvgs)  

UNF['Boiler Emission Avgs'] = sum([simplify(UNF[column]) \
                          for column in BoilerEmissionAvgs]) / len(BoilerEmissionAvgs)  
UNF['Boiler Emission PM 2.5 Avgs'] = sum([simplify(UNF[column]) \
                          for column in BoilerEmissionPMAvgs]) / len(BoilerEmissionPMAvgs)
UNF['Boiler Emission SO2 Avgs'] = sum([simplify(UNF[column]) \
                          for column in BoilerEmissionSO2Avgs]) / len(BoilerEmissionSO2Avgs)                                                                                                                                                                                            
UNF
Out[15]:
uhf_neigh the_geom cartodb_id objectid borough shape_area shape_leng uhfcode no_insurance_coverage Air Toxics Concentrations- Average Benzene Concentrations 2005 Annual Average Concentration Air Toxics Concentrations- Average Benzene Concentrations 2011 Annual Average Concentration Air Toxics Concentrations- Average Formaldehyde Concentrations 2005 Annual Average Concentration Air Toxics Concentrations- Average Formaldehyde Concentrations 2011 Annual Average Concentration Boiler Emissions- Total NOx Emissions 2013 Number per km2 Boiler Emissions- Total NOx Emissions 2015 Number per km2 Boiler Emissions- Total PM2.5 Emissions 2013 Number per km2 Boiler Emissions- Total PM2.5 Emissions 2015 Number per km2 Boiler Emissions- Total SO2 Emissions 2013 Number per km2 Boiler Emissions- Total SO2 Emissions 2015 Number per km2 Fine Particulate Matter (PM2.5) Annual Average 2009 Mean Fine Particulate Matter (PM2.5) Annual Average 2010 Mean Fine Particulate Matter (PM2.5) Annual Average 2011 Mean Fine Particulate Matter (PM2.5) Annual Average 2012 Mean Fine Particulate Matter (PM2.5) Annual Average 2013 Mean Fine Particulate Matter (PM2.5) Annual Average 2014 Mean Fine Particulate Matter (PM2.5) Annual Average 2015 Mean Fine Particulate Matter (PM2.5) Annual Average 2016 Mean Fine Particulate Matter (PM2.5) Annual Average 2017 Mean Fine Particulate Matter (PM2.5) Annual Average 2018 Mean Fine Particulate Matter (PM2.5) Summer 2009 Mean Fine Particulate Matter (PM2.5) Summer 2010 Mean Fine Particulate Matter (PM2.5) Summer 2011 Mean Fine Particulate Matter (PM2.5) Summer 2012 Mean Fine Particulate Matter (PM2.5) Summer 2013 Mean Fine Particulate Matter (PM2.5) Summer 2014 Mean Fine Particulate Matter (PM2.5) Summer 2015 Mean Fine Particulate Matter (PM2.5) Summer 2016 Mean Fine Particulate Matter (PM2.5) Summer 2017 Mean Fine Particulate Matter (PM2.5) Summer 2018 Mean Fine Particulate Matter (PM2.5) Winter 2008-09 Mean ... Ozone (O3) Summer 2015 Mean Ozone (O3) Summer 2016 Mean Ozone (O3) Summer 2017 Mean Ozone (O3) Summer 2018 Mean PM2.5-Attributable Asthma Emergency Department Visits 2009-2011 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2009-2011 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Asthma Emergency Department Visits 2012-2014 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2012-2014 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Asthma Emergency Department Visits 2015-2017 Estimated Annual Rate- 18 Yrs and Older PM2.5-Attributable Asthma Emergency Department Visits 2015-2017 Estimated Annual Rate- Children 0 to 17 Yrs Old PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2009-2011 Estimated Annual Rate PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2012-2014 Estimated Annual Rate PM2.5-Attributable Cardiovascular Hospitalizations (Adults 40 Yrs and Older) 2015-2017 Estimated Annual Rate PM2.5-Attributable Deaths 2009-2011 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Deaths 2012-2014 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Deaths 2015-2017 Estimated Annual Rate - Adults 30 Yrs and Older PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2009-2011 Estimated Annual Rate PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2012-2014 Estimated Annual Rate PM2.5-Attributable Respiratory Hospitalizations (Adults 20 Yrs and Older) 2015-2017 Estimated Annual Rate Sulfur Dioxide (SO2) Winter 2008-09 Mean Sulfur Dioxide (SO2) Winter 2009-10 Mean Sulfur Dioxide (SO2) Winter 2010-11 Mean Sulfur Dioxide (SO2) Winter 2011-12 Mean Sulfur Dioxide (SO2) Winter 2012-13 Mean Sulfur Dioxide (SO2) Winter 2013-14 Mean Sulfur Dioxide (SO2) Winter 2014-15 Mean Sulfur Dioxide (SO2) Winter 2015-16 Mean HealthCaseAvg ConcentrationAvg PM 2.5 Annual Avgs OZ Annual Avgs NO Annual Avgs SO2 Annual Avgs PM 2.5 Health Cases OZ Health Cases Benzene Avgs Formaldehyde Avgs Boiler Emission Avgs Boiler Emission PM 2.5 Avgs Boiler Emission SO2 Avgs
0 Pelham - Throgs Neck 0106000020E61000000500000001030000000100000005... 5 5 Bronx 3.865737e+08 250903.372273 104 16.1 2.7 1.3 3.2 2.0 24.9 23.6 0.5 0.4 4.4 2.8 10.59 9.68 10.50 9.23 8.74 8.97 8.93 7.50 7.52 7.00 10.44 11.87 11.46 10.29 10.26 8.55 9.68 8.06 9.29 8.39 13.30 ... 31.41 33.63 29.79 31.52 57.5 121.9 58.778219 133.938066 44.6 105.2 19.3 13.904866 19.2 54.5 45.398945 42.8 19.7 13.872216 15.9 5.15 3.34 4.27 2.50 1.54 1.84 0.96 0.28 0.479028 0.347208 0.306460 0.658991 0.329074 0.366466 0.471247 0.486808 0.262542 0.381818 0.061020 0.050501 0.049571
1 Coney Island - Sheepshead Bay 0106000020E61000000100000001030000000100000069... 18 18 Brooklyn 2.288309e+08 101869.349860 210 14.1 2.4 1.7 2.5 2.1 23.7 23.5 0.1 0.1 0.9 0.7 9.55 8.89 9.44 8.30 8.11 8.37 7.72 6.75 6.83 6.55 10.38 11.35 11.05 9.89 9.71 7.99 8.75 7.66 8.22 7.87 11.12 ... 35.01 35.62 31.86 32.50 19.8 35.1 17.941715 29.446572 18.2 31.4 22.3 15.009565 20.0 63.4 49.627644 53.1 15.4 13.689647 14.7 3.21 2.21 2.59 1.14 0.70 0.84 0.43 0.18 0.333502 0.248131 0.142563 0.788804 0.222938 0.121890 0.383501 0.283503 0.320652 0.309091 0.034529 0.011529 0.011390
2 Flushing - Clearview 0106000020E61000000200000001030000000100000005... 32 32 Queens 3.622995e+08 125334.924243 403 18.0 1.9 1.4 2.7 1.9 18.7 17.0 0.6 0.4 5.1 3.0 10.16 9.34 10.05 8.90 8.39 8.65 8.45 7.22 7.27 6.90 10.23 11.58 11.24 10.07 10.09 8.19 9.32 7.80 8.88 8.35 12.74 ... 31.88 33.44 30.26 31.28 9.3 38.0 9.559987 29.264516 7.9 29.4 14.1 9.199639 12.8 43.6 36.505364 36.1 11.3 8.850107 10.2 4.49 3.01 3.85 1.97 1.17 1.85 0.74 0.27 0.157612 0.317095 0.239533 0.646614 0.340904 0.299681 0.158150 0.157074 0.207358 0.272727 0.056325 0.054887 0.055046
3 Jamaica 0106000020E61000000200000001030000000100000004... 37 37 Queens 3.645499e+08 123620.448330 408 17.9 1.8 1.3 2.4 1.9 13.2 13.1 0.1 0.1 0.5 0.4 9.95 9.25 9.57 8.48 8.27 8.46 8.20 6.99 7.08 6.69 10.13 11.39 11.15 9.98 10.07 8.10 9.08 7.57 8.62 8.25 12.69 ... 32.04 33.86 30.93 31.33 41.6 115.8 39.600368 91.403682 29.7 69.6 18.9 14.390081 19.4 42.7 36.503670 31.7 12.7 9.847395 10.5 3.53 2.52 2.97 1.45 0.77 1.24 0.43 0.25 0.352519 0.282588 0.196358 0.639406 0.327756 0.183454 0.320951 0.384087 0.176003 0.227273 0.019869 0.011529 0.006437
4 Southeast Queens 0106000020E6100000010000000103000000010000005E... 38 38 Queens 3.616017e+08 129288.280297 409 7.8 1.8 1.1 2.4 1.8 8.1 8.1 0.0 0.0 0.3 0.3 9.35 8.65 9.17 8.04 7.85 8.02 7.90 6.51 6.75 6.42 9.65 10.98 10.79 9.61 9.75 7.72 8.75 7.06 8.35 8.05 11.72 ... 32.51 34.30 31.72 31.82 27.4 70.5 21.888064 53.846387 17.9 39.5 14.5 11.220565 17.3 34.4 27.362139 26.3 10.0 6.918950 8.2 3.18 2.21 2.56 1.30 0.60 1.14 0.41 0.26 0.210294 0.230697 0.113195 0.695403 0.250813 0.156865 0.165186 0.255402 0.132525 0.193939 0.009080 0.000000 0.004451
5 Rockaway 0106000020E610000002000000010300000001000000AD... 39 39 Queens 2.657288e+08 232823.135817 410 15.0 1.4 0.8 2.0 1.4 6.1 6.1 0.0 0.0 0.0 0.0 8.75 7.99 8.44 7.36 7.61 7.69 7.16 5.98 6.32 6.06 9.60 10.74 10.59 9.41 9.45 7.37 8.29 6.87 7.74 7.76 10.21 ... 37.44 38.18 35.19 35.18 47.8 111.8 42.293047 57.903796 39.0 55.0 19.8 13.874151 21.0 69.8 49.492853 50.2 18.8 10.214737 16.9 2.39 1.90 1.90 0.88 0.51 0.64 0.31 0.20 0.460510 0.149608 0.009296 1.000000 0.045616 0.072422 0.454065 0.466955 0.028846 0.000000 0.005105 0.000000 0.000000
6 South Beach - Tottenville 0106000020E6100000020000000103000000010000000C... 43 43 Staten Island 7.311307e+08 175067.708940 504 11.7 1.1 1.0 2.2 1.7 2.0 2.0 0.0 0.0 0.0 0.0 9.63 8.71 9.29 8.28 7.82 8.20 7.29 6.59 6.58 6.18 10.37 11.25 10.96 9.78 9.13 7.57 8.43 7.54 7.88 7.35 11.62 ... 34.07 36.17 28.95 30.34 11.8 21.0 12.318570 19.593401 9.2 13.7 15.2 11.393859 15.6 48.0 44.682959 45.9 11.7 11.804588 12.9 1.84 1.01 1.56 0.66 0.39 0.73 0.22 0.11 0.215359 0.134299 0.109052 0.728992 0.009550 0.003516 0.231509 0.199210 0.043478 0.130303 0.000000 0.000000 0.000000
7 Kingsbridge - Riverdale 0106000020E6100000010000000103000000010000002A... 2 2 Bronx 1.332914e+08 57699.154353 101 8.4 2.9 1.6 3.2 2.2 42.5 35.8 2.0 1.3 17.6 9.1 11.03 10.09 10.65 9.27 8.88 9.00 9.17 7.50 7.41 6.95 10.38 11.83 11.30 10.15 10.01 8.65 9.63 7.95 9.46 8.25 14.66 ... 28.72 32.46 27.53 29.80 25.4 60.7 27.131859 82.297276 25.8 65.8 18.3 14.010778 18.2 77.6 69.363552 63.0 18.6 13.828670 14.8 6.62 4.16 5.31 3.71 2.23 1.71 1.00 0.30 0.443991 0.340322 0.336580 0.520125 0.271717 0.466843 0.479404 0.408578 0.346990 0.448485 0.165449 0.180576 0.177656
8 Northeast Bronx 0106000020E610000001000000010300000001000000D5... 3 3 Bronx 1.813708e+08 88219.319110 102 7.0 2.8 1.4 3.2 2.0 33.8 33.3 0.3 0.3 2.2 1.6 10.68 9.65 10.48 9.11 8.73 9.00 9.13 7.55 7.46 6.99 10.33 11.83 11.39 10.23 10.17 8.71 9.73 7.93 9.25 8.33 13.58 ... 29.93 33.21 29.01 31.24 37.6 73.4 57.702278 139.919783 48.4 108.6 16.2 12.960850 18.5 57.0 47.873417 47.3 18.6 14.238585 15.4 5.38 3.37 4.25 2.80 1.53 1.61 1.11 0.29 0.482867 0.340831 0.308360 0.623238 0.314802 0.384222 0.447770 0.517964 0.293896 0.381818 0.059715 0.034586 0.026750
9 Fordham - Bronx Park 0106000020E610000001000000010300000001000000A5... 4 4 Bronx 1.407724e+08 59711.871991 103 16.7 2.7 1.6 3.2 2.2 71.0 65.0 3.0 2.3 24.5 16.6 11.10 10.26 10.77 9.47 9.06 9.19 9.14 7.57 7.52 7.19 10.60 11.97 11.48 10.35 10.29 8.76 9.73 8.05 9.39 8.55 14.47 ... 29.53 32.78 28.34 30.60 68.7 122.8 77.591185 191.400760 64.1 153.6 18.8 14.532391 21.2 49.6 43.537669 41.4 20.5 17.084194 19.4 9.48 6.03 7.67 5.06 3.15 2.71 1.54 0.46 0.585527 0.413970 0.356513 0.552532 0.357536 0.767007 0.550593 0.620462 0.327759 0.448485 0.275918 0.295865 0.285933
10 Crotona - Tremont 0106000020E610000001000000010300000001000000B7... 6 6 Bronx 1.068978e+08 66676.089072 105 16.0 3.0 1.6 3.4 2.1 62.5 56.0 2.0 1.3 16.9 8.8 11.76 10.99 11.45 10.22 9.75 9.82 9.67 8.18 8.16 7.53 11.33 12.63 12.13 11.01 10.94 9.29 10.33 8.80 10.09 8.89 15.10 ... 29.65 32.31 27.80 29.96 131.3 200.2 118.077027 214.141350 87.1 167.2 21.6 18.089985 23.3 47.4 42.577251 38.4 25.1 20.751597 21.4 9.36 6.10 7.79 4.92 3.28 2.86 1.35 0.43 0.684136 0.482416 0.481633 0.506312 0.473347 0.747767 0.702753 0.665519 0.356605 0.445455 0.188331 0.180576 0.171198
11 High Bridge - Morrisania 0106000020E61000000100000001030000000100000002... 7 7 Bronx 8.589956e+07 50241.649324 106 16.0 3.0 1.6 3.6 2.3 78.0 72.2 2.4 1.9 19.7 12.9 11.80 11.00 11.44 10.26 9.83 9.87 9.60 8.16 8.16 7.68 11.44 12.66 12.14 11.03 10.95 9.27 10.27 8.85 10.13 9.06 15.06 ... 29.93 32.34 27.72 29.68 130.1 249.3 117.382294 232.543986 98.1 188.6 24.1 17.832506 23.5 55.8 47.644820 43.0 27.6 23.463406 25.8 8.99 5.99 7.62 4.75 3.33 2.80 1.20 0.39 0.751098 0.497593 0.486988 0.492611 0.510698 0.707551 0.799388 0.702808 0.356605 0.542424 0.246330 0.240977 0.225515
12 Hunts Point - Mott Haven 0106000020E610000001000000010300000001000000EE... 8 8 Bronx 1.128093e+08 62182.674773 107 16.0 2.8 1.4 3.5 2.1 36.8 35.5 0.4 0.3 3.3 1.7 11.45 10.48 11.24 10.02 9.57 9.75 9.62 8.26 8.26 7.85 9.74 11.12 10.67 9.49 9.39 7.64 10.35 8.97 10.20 9.23 12.26 ... 31.66 33.57 29.41 30.62 138.1 251.3 130.592177 233.188371 104.6 194.7 25.0 19.715644 24.3 58.8 46.508706 45.4 30.2 25.507364 26.5 5.22 3.54 4.50 2.63 1.81 1.87 0.82 0.25 0.806298 0.393199 0.342142 0.615126 0.438175 0.363808 0.855824 0.756773 0.293896 0.460606 0.066555 0.038972 0.033249
13 Greenpoint 0106000020E6100000010000000103000000010000008B... 9 9 Brooklyn 1.047836e+08 48036.348146 201 10.2 3.7 1.6 3.5 2.2 18.9 18.8 0.1 0.0 0.4 0.3 11.93 10.57 11.51 10.27 10.00 10.54 10.49 9.46 8.98 8.72 12.17 13.32 12.84 11.69 11.54 10.37 11.00 9.80 10.79 9.85 14.25 ... 30.97 32.96 28.98 28.98 28.2 59.6 26.907195 43.518447 19.9 27.4 20.5 15.839762 15.9 45.6 37.077523 29.9 10.0 8.229991 6.6 4.25 2.93 3.66 1.95 1.17 1.39 0.58 0.19 0.176625 0.473020 0.582445 0.540727 0.494286 0.233570 0.238437 0.114814 0.423913 0.493939 0.024091 0.004386 0.004953
14 Downtown - Heights - Slope 0106000020E6100000010000000103000000010000006E... 10 10 Brooklyn 1.758001e+08 111232.015567 202 8.0 3.7 1.7 3.2 2.2 32.0 32.5 0.1 0.2 0.8 1.2 11.50 10.49 11.14 9.90 9.46 9.99 9.89 8.86 8.35 7.85 11.71 12.73 12.26 11.12 10.95 9.87 10.29 9.15 10.12 8.91 14.16 ... 29.76 31.98 27.92 28.54 40.7 89.1 35.784095 76.927883 24.1 46.4 19.8 15.670407 14.4 40.5 36.041392 26.5 13.1 10.239586 7.8 4.14 2.65 3.42 1.76 0.91 1.15 0.46 0.18 0.253692 0.427642 0.476604 0.440469 0.511087 0.187619 0.268284 0.239100 0.445652 0.448485 0.049174 0.018672 0.015800
15 Bedford Stuyvesant - Crown Heights 0106000020E610000001000000010300000001000000E6... 11 11 Brooklyn 1.662263e+08 69711.014325 203 13.1 2.5 1.3 3.0 2.0 31.7 31.9 0.1 0.2 0.9 1.0 10.75 9.93 10.29 9.13 8.75 9.16 8.87 7.94 7.53 7.27 10.92 11.96 11.54 10.41 10.32 8.97 9.49 8.28 9.14 8.48 13.62 ... 31.18 32.98 29.39 30.20 95.4 178.4 91.183292 164.790819 68.1 124.6 23.9 17.738419 22.3 55.9 45.498822 41.8 16.3 14.126735 12.4 4.62 3.19 3.91 1.88 1.11 1.28 0.52 0.22 0.607034 0.366554 0.320199 0.534971 0.457267 0.242040 0.580042 0.634027 0.243311 0.351515 0.048117 0.018672 0.014337
16 East New York 0106000020E610000001000000010300000001000000F2... 12 12 Brooklyn 1.551405e+08 75378.418333 204 14.2 2.3 1.4 2.8 2.1 14.7 14.7 0.0 0.0 0.1 0.1 10.60 9.79 10.09 8.94 8.69 9.04 8.72 7.80 7.52 7.06 10.08 11.26 10.90 9.73 9.68 8.08 9.52 8.27 9.05 8.41 12.87 ... 32.58 34.26 30.90 31.71 85.0 153.2 84.949705 141.583115 71.4 118.4 22.4 16.933933 22.8 45.9 38.567522 37.1 13.9 13.963273 13.2 3.89 2.86 3.36 1.57 1.01 1.17 0.47 0.21 0.525403 0.319881 0.247802 0.656714 0.364395 0.197632 0.512835 0.537971 0.245819 0.354545 0.016309 0.000000 0.001484
17 Sunset Park 0106000020E61000000200000001030000000100000011... 13 13 Brooklyn 1.118635e+08 100114.866691 205 21.3 3.2 1.3 3.2 2.0 13.4 13.9 0.0 0.1 0.1 0.5 11.04 10.21 10.84 9.59 9.12 9.63 9.45 8.40 8.09 7.72 11.45 12.46 12.03 10.87 10.62 9.45 9.99 8.93 9.75 8.78 13.49 ... 31.29 33.28 29.26 29.49 35.0 51.3 27.980286 45.544236 18.6 34.4 17.1 11.746441 12.4 38.7 30.858343 28.0 12.5 9.429039 7.4 3.79 2.32 3.07 1.49 0.76 1.05 0.43 0.17 0.173437 0.373630 0.414725 0.550152 0.401504 0.152172 0.185033 0.161841 0.310619 0.381818 0.018708 0.007143 0.005413
18 Borough Park 0106000020E610000001000000010300000001000000AE... 14 14 Brooklyn 1.718763e+08 63216.738141 206 15.5 2.5 1.5 2.9 2.0 34.8 34.4 0.2 0.2 1.5 1.1 10.27 9.61 10.07 8.89 8.49 8.87 8.44 7.45 7.27 6.99 10.77 11.73 11.34 10.20 10.02 8.60 9.17 8.08 8.80 8.17 12.56 ... 32.14 33.54 29.72 30.44 13.2 19.5 11.194470 18.654506 9.3 15.8 19.9 13.918530 16.1 50.3 42.140913 39.2 11.8 9.063972 8.8 4.28 2.77 3.48 1.61 0.87 1.08 0.48 0.20 0.169036 0.324162 0.256386 0.592194 0.384241 0.193114 0.230619 0.107453 0.286789 0.336364 0.054376 0.023058 0.018328
19 East Flatbush - Flatbush 0106000020E610000001000000010300000001000000CA... 15 15 Brooklyn 1.937373e+08 73949.350573 207 11.6 2.3 1.4 2.8 2.1 33.5 33.2 0.3 0.2 2.3 1.7 10.47 9.80 10.15 8.98 8.60 8.97 8.59 7.64 7.36 7.04 10.81 11.81 11.42 10.28 10.17 8.74 9.29 8.12 8.92 8.26 13.08 ... 32.20 33.66 30.13 30.95 57.9 115.8 49.929774 102.374408 41.9 84.2 18.5 13.421584 18.3 43.2 37.275549 36.2 10.5 10.563806 9.7 4.60 3.12 3.80 1.78 1.00 1.14 0.49 0.21 0.376538 0.337621 0.280140 0.602570 0.389841 0.221794 0.343030 0.410047 0.245819 0.354545 0.057586 0.027444 0.028234
20 Canarsie - Flatlands 0106000020E610000002000000010300000001000000E0... 16 16 Brooklyn 3.598796e+08 142322.645199 208 7.4 2.4 1.1 2.8 1.8 6.7 6.6 0.0 0.0 0.0 0.0 9.85 9.12 9.55 8.37 8.18 8.48 8.10 7.12 7.02 6.70 10.35 11.44 11.12 9.95 9.85 8.24 8.97 7.77 8.54 8.05 12.12 ... 34.70 35.79 32.45 32.96 40.9 81.7 35.080464 70.948892 31.4 61.4 18.3 13.058780 18.3 49.7 39.489024 40.0 12.5 11.066099 11.9 3.22 2.33 2.67 1.21 0.77 0.86 0.40 0.18 0.340798 0.256123 0.185211 0.791684 0.219690 0.126893 0.327198 0.354399 0.190217 0.254545 0.005787 0.000000 0.000000
21 Bensonhurst - Bay Ridge 0106000020E610000001000000010300000001000000B3... 17 17 Brooklyn 1.603987e+08 73089.457275 209 22.2 2.8 1.6 2.7 2.0 26.5 26.1 0.2 0.2 1.7 1.2 9.91 9.18 9.78 8.60 8.24 8.62 8.13 7.11 7.06 6.67 10.59 11.56 11.19 10.03 9.77 8.27 8.95 7.94 8.52 7.83 11.82 ... 32.83 34.25 30.05 30.90 11.3 20.7 10.405043 18.085161 8.5 16.8 16.5 11.120827 14.2 53.6 41.317065 40.5 10.4 8.863740 8.9 3.37 2.10 2.72 1.25 0.67 0.95 0.43 0.17 0.175974 0.283444 0.198206 0.651006 0.318441 0.126367 0.196735 0.155213 0.337375 0.306061 0.044702 0.023058 0.020313
22 Williamsburg - Bushwick 0106000020E610000001000000010300000001000000B1... 19 19 Brooklyn 1.066612e+08 49012.822810 211 23.9 2.8 1.4 3.1 2.1 27.8 27.8 0.1 0.1 0.3 0.3 11.36 10.33 10.88 9.70 9.36 9.84 9.61 8.67 8.22 8.11 12.74 13.92 13.48 12.31 12.20 10.93 10.20 8.99 9.87 9.31 15.14 ... 31.10 32.99 29.33 29.64 106.8 184.6 97.152228 165.258535 67.3 107.9 26.9 19.202565 21.0 50.0 41.089969 34.7 18.2 15.939331 11.0 4.78 3.33 4.12 2.05 1.25 1.45 0.58 0.22 0.562627 0.453345 0.539951 0.537130 0.482304 0.269884 0.576596 0.548657 0.293896 0.400000 0.037453 0.011529 0.004451
23 Washington Heights - Inwood 0106000020E61000000600000001030000000100000007... 20 20 Manhattan 9.890333e+07 67477.648187 301 13.4 4.1 2.4 3.9 2.8 115.3 100.6 5.8 4.2 51.0 32.0 11.55 10.71 11.12 9.89 9.48 9.49 9.36 7.81 7.79 7.32 10.76 12.11 11.58 10.45 10.35 8.88 9.91 8.45 9.87 8.65 15.02 ... 28.95 31.92 26.92 28.95 44.5 138.5 40.422948 111.595412 32.9 81.6 18.1 13.996671 17.1 46.0 38.877338 33.2 12.5 10.483500 10.3 11.12 7.28 9.28 6.14 4.24 3.35 1.50 0.50 0.307583 0.495934 0.409829 0.443610 0.458513 0.923612 0.338015 0.277151 0.636288 0.754545 0.506275 0.554386 0.570109
24 Central Harlem - Morningside Heights 0106000020E610000001000000010300000001000000AE... 21 21 Manhattan 6.139621e+07 50891.462079 302 12.0 3.9 2.1 4.2 2.6 82.1 77.8 2.0 1.6 15.7 10.7 11.60 10.62 11.13 9.99 9.70 9.73 9.36 7.95 7.93 7.53 11.36 12.49 11.93 10.85 10.76 9.12 9.99 8.67 9.91 8.90 14.56 ... 28.98 31.35 26.51 28.41 137.0 291.1 116.419865 253.139192 95.1 193.1 19.7 16.211879 20.2 63.6 53.094419 45.4 18.8 16.518882 14.9 8.21 5.59 7.04 4.46 3.08 2.64 1.09 0.35 0.709876 0.489802 0.439610 0.399954 0.565560 0.639271 0.724162 0.695591 0.551839 0.733333 0.225538 0.202005 0.183844
25 East Harlem 0106000020E61000000400000001030000000100000009... 22 22 Manhattan 6.089727e+07 53979.192786 303 18.0 4.2 2.1 4.2 2.6 55.8 50.1 1.3 0.7 11.6 4.8 11.55 10.41 11.12 9.98 9.73 9.84 9.51 8.19 8.11 7.39 10.95 12.31 11.81 10.63 10.49 8.88 10.18 8.90 10.05 8.72 13.58 ... 29.58 31.62 26.91 28.83 147.1 299.4 129.634838 241.329056 111.6 215.5 23.3 20.687630 25.5 69.9 57.850564 54.2 29.2 22.177993 20.3 7.04 4.89 6.10 3.71 2.57 2.42 1.00 0.30 0.850366 0.464570 0.413926 0.439462 0.546371 0.533940 0.904681 0.796051 0.580686 0.733333 0.134036 0.107018 0.105326
26 Upper West Side 0106000020E610000001000000010300000001000000A9... 23 23 Manhattan 5.827181e+07 46554.865062 304 9.7 3.9 2.4 4.0 2.7 247.9 210.5 11.4 7.0 99.7 50.9 12.18 11.01 11.49 10.46 10.35 10.42 9.78 8.49 8.33 8.16 12.13 13.03 12.46 11.44 11.38 9.79 10.39 9.12 10.13 9.48 14.69 ... 28.12 30.54 25.57 27.20 25.5 74.2 23.489180 63.929926 23.2 51.9 12.0 9.568119 12.3 48.9 44.148030 40.5 11.6 10.194974 8.5 10.87 7.48 9.31 5.92 3.91 3.49 1.40 0.44 0.197116 0.596933 0.530734 0.320264 0.606704 0.885515 0.227987 0.166245 0.617057 0.736364 0.948341 1.000000 1.000000
27 Upper East Side 0106000020E6100000020000000103000000010000004F... 24 24 Manhattan 5.438999e+07 49821.036696 305 4.7 4.5 2.5 4.5 2.8 269.8 225.9 10.8 5.7 95.0 39.4 12.88 11.83 12.10 11.19 11.10 11.15 10.20 9.07 8.85 8.68 12.91 13.66 13.11 12.14 12.18 10.43 10.94 9.66 10.40 10.03 15.30 ... 28.07 30.17 25.24 26.97 9.4 35.5 7.980573 24.439332 6.6 18.6 11.1 9.181452 11.0 45.3 43.366522 35.4 9.2 8.379345 6.7 12.12 8.50 10.51 6.31 4.16 3.84 1.49 0.45 0.099355 0.669861 0.646476 0.280089 0.697621 0.976642 0.126457 0.072252 0.696488 0.845455 0.886113 0.880827 0.863463
28 Gramercy Park - Murray Hill 0106000020E6100000010000000103000000010000008C... 26 26 Manhattan 4.828882e+07 38475.197152 307 4.7 5.3 2.8 5.3 2.8 284.7 256.2 9.0 5.5 78.8 41.5 15.03 14.24 13.93 13.23 13.20 13.23 11.72 10.76 10.33 10.30 15.05 15.38 14.82 13.98 14.14 12.38 12.47 11.17 11.53 11.64 17.61 ... 25.06 27.51 22.12 23.99 20.7 69.7 23.957592 57.635436 16.5 44.5 12.9 12.083862 12.0 47.9 45.239369 35.7 8.6 8.893317 6.9 9.80 6.73 8.37 4.97 3.03 3.15 1.28 0.40 0.160565 0.841235 1.000000 0.000000 1.000000 0.759805 0.205753 0.115377 0.838629 0.966667 0.863481 0.787594 0.802848
29 Chelsea - Clinton 0106000020E61000000100000001030000000100000029... 25 25 Manhattan 7.943351e+07 87605.442609 306 7.5 4.9 3.1 4.6 2.9 204.8 181.5 7.7 4.9 67.4 36.4 14.24 13.21 13.27 12.42 12.41 12.53 11.39 10.32 9.91 9.97 14.29 14.80 14.24 13.33 13.38 11.83 12.01 10.75 11.34 11.25 16.68 ... 26.11 28.76 23.43 24.81 25.3 88.6 28.516622 75.558132 20.4 53.6 11.7 11.788874 11.7 39.7 40.184208 31.7 9.0 9.389808 6.9 8.37 5.65 7.09 4.34 2.57 2.73 1.13 0.36 0.176173 0.757515 0.888045 0.112653 0.891864 0.634211 0.193505 0.158842 0.865385 0.893939 0.698350 0.687719 0.695578
30 Greenwich Village - Soho 0106000020E610000001000000010300000001000000AA... 27 27 Manhattan 4.023911e+07 50948.825728 308 7.5 4.7 2.6 4.0 2.6 132.5 121.3 4.1 2.6 32.9 17.8 12.75 11.56 12.04 10.99 10.81 11.17 10.60 9.52 9.02 8.79 12.90 13.66 13.12 12.10 12.02 10.79 11.04 9.84 10.66 9.91 15.16 ... 27.35 30.03 25.23 26.35 9.2 24.5 7.241535 18.093165 6.5 14.2 9.6 7.287550 8.3 41.0 31.690990 25.5 5.4 5.277515 4.7 7.35 4.78 6.14 3.58 1.94 2.24 0.88 0.31 0.021679 0.602860 0.656045 0.250011 0.733903 0.497912 0.025724 0.017634 0.737458 0.703030 0.390285 0.365539 0.339848
31 Union Square - Lower East Side 0106000020E61000000100000001030000000100000082... 28 28 Manhattan 5.732039e+07 34713.209340 309 6.8 5.0 2.3 4.0 2.5 126.1 117.5 3.0 2.0 24.9 14.1 12.08 10.87 11.44 10.35 10.15 10.53 10.06 9.02 8.52 8.14 12.26 13.11 12.59 11.54 11.46 10.20 10.53 9.32 10.19 9.28 14.47 ... 27.73 30.14 25.58 26.82 45.5 151.9 36.212139 114.774486 31.6 102.2 18.5 12.657789 15.6 58.8 47.285759 45.1 15.5 11.963810 10.7 7.91 5.25 6.66 3.80 2.12 2.48 0.97 0.33 0.345189 0.540875 0.538231 0.279362 0.658954 0.554847 0.402867 0.287512 0.701087 0.669697 0.328164 0.274436 0.263382
32 Lower Manhattan 0106000020E6100000020000000103000000010000006A... 29 29 Manhattan 3.513227e+07 50752.735123 310 6.8 6.3 2.1 4.2 2.3 118.7 114.9 1.7 1.2 13.7 8.3 13.06 12.19 12.28 11.32 11.06 11.36 10.54 9.53 9.01 8.94 13.16 13.75 13.21 12.25 12.22 10.91 11.01 9.80 10.48 10.07 15.79 ... 26.98 29.73 24.66 25.92 25.7 57.2 24.137901 52.250935 19.2 35.4 14.0 12.356072 10.9 36.4 34.365831 27.3 5.8 6.081366 6.6 4.57 2.89 3.78 2.13 1.09 1.37 0.55 0.20 0.115849 0.585061 0.687351 0.189105 0.771480 0.239437 0.137039 0.094660 0.782609 0.633333 0.246329 0.160276 0.150239
33 Long Island City - Astoria 0106000020E610000001000000010300000001000000D2... 30 30 Queens 1.923020e+08 72324.762815 401 10.6 2.7 1.8 3.6 2.3 30.6 29.3 0.8 0.7 6.7 5.0 11.40 10.05 11.02 9.84 9.60 9.98 9.78 8.65 8.42 8.16 11.60 12.81 12.33 11.18 11.07 9.59 10.46 9.23 10.23 9.43 13.59 ... 31.43 33.15 29.12 29.66 28.1 79.4 25.085095 48.830484 21.8 46.1 15.6 11.377397 14.7 39.8 31.593392 31.4 12.3 9.751318 9.3 5.11 3.63 4.50 2.49 1.68 1.89 0.79 0.24 0.190706 0.446669 0.471944 0.580720 0.467489 0.351390 0.210110 0.171302 0.371237 0.542424 0.090695 0.085088 0.082717
34 West Queens 0106000020E610000002000000010300000001000000A6... 31 31 Queens 3.246549e+08 116570.277413 402 28.0 2.2 1.6 3.4 2.2 24.6 23.7 0.3 0.2 2.3 1.1 10.99 9.89 10.60 9.46 9.13 9.47 9.17 8.14 7.93 7.57 11.13 12.34 11.92 10.77 10.71 9.05 9.98 8.71 9.58 8.89 13.50 ... 31.57 33.12 29.44 30.33 15.6 75.2 13.563269 49.015452 14.7 60.2 13.2 8.840457 12.7 33.2 26.294120 27.1 9.6 7.460492 8.6 5.38 3.84 4.79 2.44 1.60 2.00 0.78 0.25 0.127837 0.405857 0.378445 0.587282 0.453512 0.365079 0.124890 0.130784 0.279682 0.478788 0.044146 0.027444 0.022340
35 Bayside - Little Neck 0106000020E61000000100000001030000000100000036... 33 33 Queens 2.145688e+08 70215.833085 404 8.8 1.9 1.2 2.5 1.9 10.4 9.8 0.2 0.2 1.6 0.9 9.72 8.98 9.71 8.55 8.08 8.31 8.26 6.88 7.03 6.48 9.87 11.26 11.01 9.84 9.94 7.96 9.07 7.38 8.65 8.00 12.16 ... 31.27 32.99 30.27 30.98 6.7 22.1 6.627942 13.435123 4.9 12.2 12.5 8.655824 11.7 34.5 28.434109 29.7 10.2 6.965867 8.2 3.69 2.41 3.02 1.56 0.75 1.50 0.57 0.27 0.085433 0.249741 0.174128 0.621697 0.249489 0.215870 0.073682 0.097184 0.163880 0.242424 0.023374 0.023058 0.016865
36 Fresh Meadows 0106000020E610000001000000010300000001000000DD... 35 35 Queens 1.534321e+08 61672.825322 406 8.8 1.7 1.3 2.3 1.8 15.3 14.3 0.5 0.4 4.3 3.1 10.00 9.25 9.74 8.63 8.21 8.43 8.19 7.03 7.05 6.55 10.09 11.39 11.08 9.92 9.96 8.01 9.07 7.59 8.61 8.02 12.76 ... 31.53 33.16 30.07 31.03 17.2 47.7 16.723849 38.055026 12.7 36.2 14.9 9.366114 11.7 43.4 35.218209 30.7 9.7 8.061808 8.5 4.02 2.78 3.47 1.70 0.98 1.61 0.57 0.26 0.174489 0.288451 0.194860 0.606716 0.340321 0.243999 0.151395 0.197583 0.166388 0.178788 0.050078 0.050501 0.052017
37 Ridgewood - Forest Hills 0106000020E610000001000000010300000001000000A3... 34 34 Queens 2.652703e+08 87164.991021 405 9.6 2.0 1.5 3.0 2.1 23.6 22.5 0.3 0.2 2.7 1.3 10.44 9.52 9.95 8.83 8.51 8.85 8.51 7.56 7.32 6.99 10.56 11.73 11.35 10.20 10.17 8.49 9.33 8.05 8.85 8.33 13.29 ... 31.81 33.48 30.06 30.96 14.9 51.1 14.544830 43.550714 12.8 32.2 15.7 11.237138 14.5 45.7 39.005722 34.7 12.4 10.678280 10.0 4.50 3.25 3.99 1.92 1.21 1.54 0.58 0.23 0.204802 0.330529 0.260926 0.608638 0.375188 0.265874 0.210359 0.199245 0.238712 0.384848 0.044093 0.027444 0.026311
38 Southwest Queens 0106000020E61000000400000001030000000100000007... 36 36 Queens 2.725265e+08 123610.729914 407 13.1 1.8 1.4 2.4 1.9 14.5 14.3 0.1 0.1 0.8 0.5 9.96 9.19 9.43 8.32 8.14 8.39 8.05 7.02 6.94 6.56 10.13 11.33 11.03 9.86 9.88 8.06 8.94 7.59 8.43 8.02 12.85 ... 32.59 34.34 31.16 31.93 29.8 80.0 23.619282 60.950361 18.6 43.0 19.9 13.301114 18.5 37.1 29.283889 27.6 10.5 8.270584 9.0 3.72 2.76 3.22 1.52 0.93 1.21 0.45 0.23 0.219720 0.286411 0.176431 0.672130 0.342206 0.194316 0.226476 0.212965 0.197742 0.227273 0.022251 0.011529 0.008924
39 Port Richmond 0106000020E61000000100000001030000000100000041... 40 40 Staten Island 1.645195e+08 86322.590205 501 9.6 2.5 1.2 2.4 1.8 2.8 2.8 0.0 0.0 0.0 0.0 10.22 9.02 9.73 8.55 8.27 8.79 8.34 7.30 7.19 6.78 10.75 11.74 11.31 10.13 9.57 8.32 9.08 8.22 8.61 7.84 12.46 ... 29.99 33.42 27.00 28.48 64.5 92.0 53.993939 85.936899 45.6 66.9 16.4 12.489382 17.9 49.1 41.112088 41.9 16.6 13.969809 17.4 2.49 1.35 2.08 1.04 0.49 0.97 0.31 0.12 0.425327 0.249968 0.224502 0.511942 0.286227 0.057113 0.396567 0.454086 0.221572 0.193939 0.000996 0.000000 0.000000
40 Stapleton - St. George 0106000020E61000000100000001030000000100000041... 41 41 Staten Island 3.272437e+08 107053.886650 502 9.6 1.3 1.1 2.3 1.7 4.7 4.6 0.0 0.0 0.4 0.2 9.63 8.64 9.36 8.18 7.90 8.34 7.82 6.80 6.80 6.36 10.36 11.35 10.96 9.78 9.34 7.89 8.68 7.79 8.15 7.46 11.46 ... 31.84 34.18 28.83 29.89 42.9 76.1 39.588010 66.092923 32.0 49.5 16.9 12.737080 19.1 54.3 49.556533 50.0 17.3 16.192245 17.6 2.53 1.45 2.08 0.98 0.49 0.91 0.35 0.13 0.422969 0.190277 0.134205 0.618773 0.170460 0.062590 0.407961 0.437977 0.084448 0.145455 0.004620 0.000000 0.003971
41 Willowbrook 0106000020E61000000200000001030000000100000010... 42 42 Staten Island 4.131080e+08 117827.805092 503 11.7 1.6 1.1 2.3 1.8 2.1 2.1 0.0 0.0 0.0 0.0 10.10 8.99 9.63 8.52 8.22 8.68 8.01 7.10 7.05 6.63 10.73 11.68 11.30 10.12 9.53 8.12 8.94 8.09 8.35 7.74 12.19 ... 31.66 34.68 27.95 29.36 16.0 32.8 15.903198 26.742820 12.9 18.8 17.8 14.048749 16.8 58.3 57.154771 48.4 13.5 13.536328 14.1 2.17 1.18 1.83 0.86 0.44 0.88 0.28 0.12 0.299544 0.196190 0.197519 0.613346 0.130805 0.034931 0.325523 0.273565 0.113294 0.178788 0.000125 0.000000 0.000000

42 rows × 141 columns

We see these normalized values for the new columns added. All are between the range of 0 and 1 which will make better for the visualizations to be accurate.

In [16]:
#Bar plot for first 21 neighborhoods
def barPlotFirst22(df, col1, col2, name, col3):
  sns.barplot(df[col1], df[col2][:22], hue = df[col3])
  plt.title(f"{name} Averages in NYC neighborhoods First 22 UHF")

#Bar plot for last 21 neighborhoods
def barPlotLast22(df, col1, col2, name, col3):
  sns.barplot(df[col1], df[col2][22:], hue = df[col3])
  plt.title(f"{name} Averages in NYC neighborhoods Last 22 UHF")
In [17]:
barPlotFirst22(UNF,'Benzene Avgs', 'uhf_neigh', 'Benzene', 'borough')
In [18]:
barPlotLast22(UNF,'Benzene Avgs', 'uhf_neigh', 'Benzene', 'borough')

We see that benzene affects the neighborhoods of Manhattan the most, followed by Brooklyn. Benzene comes from gasoline fumes and crude oils. Benzene is released in the air by automobile exhaust and Manhattan happens to have the most traffic in New York City.

In [19]:
barPlotFirst22(UNF,'Formaldehyde Avgs', 'uhf_neigh', 'Formaldehyde', 'borough')
In [20]:
barPlotLast22(UNF,'Formaldehyde Avgs', 'uhf_neigh', 'Formaldehyde', 'borough')

The Bronx and Manhattan have the most neighborhoods affected by formaldehyde. Formaldehyde is produced from during the combustion of fuels in vehicles and bulidings. It is also formed in the atmosphere with among other pollutants. Manhattan does have the most buildings and vehicles among the boroughs. The Bronx also consists of apartment bulidings.

In [21]:
barPlotFirst22(UNF,'PM 2.5 Annual Avgs', 'uhf_neigh', 'PM 2.5', 'borough')
In [22]:
barPlotLast22(UNF,'PM 2.5 Annual Avgs', 'uhf_neigh', 'PM 2.5', 'borough')

Fine Particulate Matter PM 2.5 primarly comes from automobile exhausts. Just like the benzene and formaldehyde pollutants, some of the neighborhoods of Manhattan, Bronx and Brooklyn mostly consist of PM 2.5 than other neighborhoods.

In [23]:
barPlotFirst22(UNF,'OZ Annual Avgs', 'uhf_neigh', 'Ozone (O3)', 'borough')
In [24]:
barPlotLast22(UNF,'OZ Annual Avgs', 'uhf_neigh', 'Ozone (O3)', 'borough')

Ozone pollution is mostly present in Queens and Staten Island where it gets emitted from cars, power plants, and industrial boilers. There is a power plant in Astoria which contibute to the concentration in Queens. Also, it occurs when other organic compounds combine with the sunlight which comes from chemical emitted from cars.

In [25]:
barPlotFirst22(UNF,'NO Annual Avgs', 'uhf_neigh', 'Nitrogen Dioxide (NO2)', 'borough')
In [26]:
barPlotLast22(UNF,'NO Annual Avgs', 'uhf_neigh', 'Nitrogen Dioxide (NO2)', 'borough')

Nitrogen dioxide is easily produced by combustion within stoves, water heaters, furnaces, and boilers. It is also produced from vehicles and power plants, as Brooklyn and the Bronx are more urban like therefore contributes to more homes producing nitrogen dioxide.

In [27]:
barPlotFirst22(UNF,'SO2 Annual Avgs', 'uhf_neigh', 'Sulfur Dioxide (SO2)', 'borough')
In [28]:
barPlotLast22(UNF,'SO2 Annual Avgs', 'uhf_neigh', 'Sulfur Dioxide (SO2)', 'borough')

Sulfur dioxide comes from electric utilities, mostly the ones that burn coal. Also, boiler emissions produce sulfur dioxide, as well as other industrial facilities. Sulfur dioxide is mostly present within the neighborhoods of Manhattan and the Bronx.

Boiler Emissions in New York City neighborhoods

In [29]:
def LinePlotFirst22(df, col1, col2, name):
  x = df[col1][:22]
  y = df[col2][:22]
  plt.xlabel(col1)
  plt.ylabel(col2)
  plt.title(f"{name} Averages in NYC neighborhoods First 22 UHF")
  plt.xticks(rotation=90)
  plt.plot(x, y, color = 'black',
         linestyle = 'solid', marker = 'o',
         markerfacecolor = 'red', markersize = 12)
def LinePlotLast22(df, col1, col2, name):
  x = df[col1][22:]
  y = df[col2][22:]
  plt.xlabel(col1)
  plt.ylabel(col2)
  plt.title(f"{name} Averages in NYC neighborhoods Last 22 UHF")
  plt.xticks(rotation=90)
  plt.plot(x, y, color = 'black',
         linestyle = 'solid', marker = 'o',
         markerfacecolor = 'red', markersize = 12)
In [30]:
LinePlotFirst22(UNF,'uhf_neigh', 'Boiler Emission Avgs', 'Boiler Emission')
In [31]:
LinePlotLast22(UNF,'uhf_neigh', 'Boiler Emission Avgs', 'Boiler Emission')

Boiler emissions are common in homes and bulidings that use gas. From the visualizations, we have that some neighborhoods in Manhattan and the Bronx consists of more pollutants emitted from boiler emissions. This could be because Manhattan and the Bronx consist of more bulidings which have more boilers.

In [32]:
def ScatterPlot(df, col1, col2):
  sns.scatterplot(x = df[col1], y = df[col2]);
In [33]:
ScatterPlot(UNF, 'PM 2.5 Annual Avgs', 'PM 2.5 Health Cases')

The health cases correlate with the averages of the PM 2.5 concentrations throughout the years. The cases do increase as the average concentrations of PM 2.5 increases. There are two outliers where the highest concentrations of PM 2.5 didn't have as much health cases for that certain year.

In [34]:
ScatterPlot(UNF, 'Boiler Emission PM 2.5 Avgs', 'PM 2.5 Health Cases')

As seen before, the boiler emissions are more common in Manhattan and the Bronx. It could be seen boiler emissions PM 2.5 is somewhat correlated with the health cases. Not as much though, it could more seen as a small cause of these health cases. The health cases correlated to PM 2.5 could be more correlated to PM 2.5 emitted from car exhaust.

In [35]:
ScatterPlot(UNF, 'Boiler Emission PM 2.5 Avgs', 'PM 2.5 Annual Avgs')

This shows correlation as the boiler emissions are one of the main causes of PM 2.5 concentrations. The correlation could be most likely in Manhattan and the Bronx.

In [36]:
ScatterPlot(UNF, 'Boiler Emission SO2 Avgs', 'SO2 Annual Avgs')

You can see that the boiler emissions and sulfur dioxide are heavily correlated as both increase. So it can be seen as one of the main causes of sulfur dioxide being in the air of New York City.

Here, the geojson file of the UHF42 of New York City is imported. It was obtained from the same link as the UHF42 dataset.

In [37]:
uploaded = files.upload()
geo_data = gpd.read_file('uhf_42_dohmh_2009.geojson').dropna()
Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.
Saving uhf_42_dohmh_2009.geojson to uhf_42_dohmh_2009.geojson

Here is the map of the concentrations of the air pollutants all across New York City.

In [38]:
map = folium.Map([40.7678,-73.9645], zoom_start = 10, tiles = "cartodbpositron")

tiles = ['stamenwatercolor', 'cartodbpositron', 'openstreetmap', 'stamenterrain']
for tile in tiles:
    folium.TileLayer(tile).add_to(map)

legendTitle = "Pollution in NYC"

map.add_child(folium.Choropleth(
        geo_data = geo_data,
        name = 'Pollution in NYC',
        data = UNF,
        columns = ['uhf_neigh', 'ConcentrationAvg'],
        key_on = 'properties.uhf_neigh',
        fill_color = 'YlOrRd',
        threshold_scale = [0,0.2,0.4,0.6,0.8,1],
        fill_opacity = 0.9,
        line_opacity = 0.4,
        legend_name = legendTitle,
        highlight = True
    )
)
folium.LayerControl().add_to(map)

map
Out[38]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Also, here we have a map of the health cases relating to the air pollutants across New York City.

In [39]:
map = folium.Map([40.7678,-73.9645], zoom_start = 10, tiles = "cartodbpositron")

tiles = ['stamenwatercolor', 'cartodbpositron', 'openstreetmap', 'stamenterrain']
for tile in tiles:
    folium.TileLayer(tile).add_to(map)

LegendTitle = "Health Cases in NYC"

map.add_child(folium.Choropleth(
        geo_data = geo_data,
        name = 'Health Cases in NYC',
        data = UNF,
        columns = ['uhf_neigh', 'HealthCaseAvg'],
        key_on = 'properties.uhf_neigh',
        legend_name = LegendTitle,
        fill_color = 'BuPu',
        threshold_scale = [0,0.2,0.4,0.6,0.8,1],
        fill_opacity = 0.9,
        line_opacity = .4,
        highlight = True
    )
)
folium.LayerControl().add_to(map)
map
Out[39]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Overall, we see that pollution mainly affects Manhattan but the health cases are spread mostly in the Bronx. It could be because people commute to work in Manhattan then back to the borough they originally live in. The solution would be to use less fossil fuels and maybe invest in solar panels and electric cars as vehicle exhaust affect a lot of New Yorkers based on the pollutants the gas releases.

In [ ]:
!jupyter nbconvert --to html AirQualityControlinNewYorkCity.ipynb